WLED/wled00/bus_manager.h

788 lines
22 KiB
C
Raw Permalink Normal View History

2020-12-01 00:33:47 +01:00
#ifndef BusManager_h
#define BusManager_h
/*
* Class for addressing various light types
*/
2021-01-15 15:43:11 +01:00
#include "const.h"
#include "pin_manager.h"
2020-12-07 01:39:42 +01:00
#include "bus_wrapper.h"
2021-01-17 00:34:34 +01:00
#include <Arduino.h>
2020-12-01 00:33:47 +01:00
//colors.cpp
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
void colorRGBtoRGBW(byte* rgb);
// enable additional debug output
#ifdef WLED_DEBUG
#ifndef ESP8266
#include <rom/rtc.h>
#endif
#define DEBUG_PRINT(x) Serial.print(x)
#define DEBUG_PRINTLN(x) Serial.println(x)
#define DEBUG_PRINTF(x...) Serial.printf(x)
#else
#define DEBUG_PRINT(x)
#define DEBUG_PRINTLN(x)
#define DEBUG_PRINTF(x...)
#endif
#define GET_BIT(var,bit) (((var)>>(bit))&0x01)
#define SET_BIT(var,bit) ((var)|=(uint16_t)(0x0001<<(bit)))
#define UNSET_BIT(var,bit) ((var)&=(~(uint16_t)(0x0001<<(bit))))
2021-02-26 16:05:05 +01:00
//color mangling macros
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
#define R(c) (byte((c) >> 16))
#define G(c) (byte((c) >> 8))
#define B(c) (byte(c))
#define W(c) (byte((c) >> 24))
2021-01-30 20:51:36 +01:00
//temporary struct for passing bus configuration to bus
struct BusConfig {
uint8_t type;
2021-04-01 12:53:01 +02:00
uint16_t count;
uint16_t start;
uint8_t colorOrder;
bool reversed;
uint8_t skipAmount;
2021-10-07 22:57:07 +02:00
bool refreshReq;
uint8_t autoWhite;
2021-01-30 20:51:36 +01:00
uint8_t pins[5] = {LEDPIN, 255, 255, 255, 255};
BusConfig(uint8_t busType, uint8_t* ppins, uint16_t pstart, uint16_t len = 1, uint8_t pcolorOrder = COL_ORDER_GRB, bool rev = false, uint8_t skip = 0, byte aw=RGBW_MODE_MANUAL_ONLY) {
2021-10-07 22:57:07 +02:00
refreshReq = (bool) GET_BIT(busType,7);
type = busType & 0x7F; // bit 7 may be/is hacked to include refresh info (1=refresh in off state, 0=no refresh)
count = len; start = pstart; colorOrder = pcolorOrder; reversed = rev; skipAmount = skip; autoWhite = aw;
2021-01-30 20:51:36 +01:00
uint8_t nPins = 1;
2021-10-06 14:30:41 +02:00
if (type >= TYPE_NET_DDP_RGB && type < 96) nPins = 4; //virtual network bus. 4 "pins" store IP address
else if (type > 47) nPins = 2;
2021-05-22 00:13:49 +02:00
else if (type > 40 && type < 46) nPins = NUM_PWM_PINS(type);
2021-01-30 20:51:36 +01:00
for (uint8_t i = 0; i < nPins; i++) pins[i] = ppins[i];
}
//validates start and length and extends total if needed
bool adjustBounds(uint16_t& total) {
if (!count) count = 1;
if (count > MAX_LEDS_PER_BUS) count = MAX_LEDS_PER_BUS;
if (start >= MAX_LEDS) return false;
//limit length of strip if it would exceed total permissible LEDs
if (start + count > MAX_LEDS) count = MAX_LEDS - start;
//extend total count accordingly
if (start + count > total) total = start + count;
return true;
}
2021-01-30 20:51:36 +01:00
};
// Defines an LED Strip and its color ordering.
struct ColorOrderMapEntry {
uint16_t start;
uint16_t len;
uint8_t colorOrder;
};
struct ColorOrderMap {
void add(uint16_t start, uint16_t len, uint8_t colorOrder) {
if (_count >= WLED_MAX_COLOR_ORDER_MAPPINGS) {
return;
}
if (len == 0) {
return;
}
if (colorOrder > COL_ORDER_MAX) {
return;
}
_mappings[_count].start = start;
_mappings[_count].len = len;
_mappings[_count].colorOrder = colorOrder;
_count++;
}
uint8_t count() const {
return _count;
}
void reset() {
_count = 0;
memset(_mappings, 0, sizeof(_mappings));
}
const ColorOrderMapEntry* get(uint8_t n) const {
if (n > _count) {
return nullptr;
}
return &(_mappings[n]);
}
inline uint8_t IRAM_ATTR getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
if (_count == 0) return defaultColorOrder;
// upper nibble containd W swap information
uint8_t swapW = defaultColorOrder >> 4;
for (uint8_t i = 0; i < _count; i++) {
if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
return _mappings[i].colorOrder | (swapW << 4);
}
}
return defaultColorOrder;
}
private:
uint8_t _count;
ColorOrderMapEntry _mappings[WLED_MAX_COLOR_ORDER_MAPPINGS];
};
//parent class of BusDigital, BusPwm, and BusNetwork
2020-12-01 00:33:47 +01:00
class Bus {
public:
2022-08-21 20:50:24 +02:00
Bus(uint8_t type, uint16_t start, uint8_t aw)
: _bri(255)
, _len(1)
, _valid(false)
, _needsRefresh(false)
{
_type = type;
_start = start;
_autoWhiteMode = Bus::isRgbw(_type) ? aw : RGBW_MODE_MANUAL_ONLY;
};
virtual ~Bus() {} //throw the bus under the bus
2022-08-21 20:50:24 +02:00
virtual void show() = 0;
virtual bool canShow() { return true; }
2021-11-30 16:28:26 +01:00
virtual void setStatusPixel(uint32_t c) {}
2022-08-21 20:50:24 +02:00
virtual void setPixelColor(uint16_t pix, uint32_t c) = 0;
2021-11-30 16:28:26 +01:00
virtual uint32_t getPixelColor(uint16_t pix) { return 0; }
2022-08-21 20:50:24 +02:00
virtual void setBrightness(uint8_t b) { _bri = b; };
virtual void cleanup() = 0;
virtual uint8_t getPins(uint8_t* pinArray) { return 0; }
virtual uint16_t getLength() { return _len; }
virtual void setColorOrder() {}
virtual uint8_t getColorOrder() { return COL_ORDER_RGB; }
virtual uint8_t skippedLeds() { return 0; }
inline uint16_t getStart() { return _start; }
inline void setStart(uint16_t start) { _start = start; }
inline uint8_t getType() { return _type; }
inline bool isOk() { return _valid; }
inline bool isOffRefreshRequired() { return _needsRefresh; }
bool containsPixel(uint16_t pix) { return pix >= _start && pix < _start+_len; }
virtual bool isRgbw() { return Bus::isRgbw(_type); }
static bool isRgbw(uint8_t type) {
if (type == TYPE_SK6812_RGBW || type == TYPE_TM1814) return true;
if (type > TYPE_ONOFF && type <= TYPE_ANALOG_5CH && type != TYPE_ANALOG_3CH) return true;
2022-09-02 03:12:03 +02:00
if (type == TYPE_NET_DDP_RGBW) return true;
return false;
}
virtual bool hasRGB() {
if (_type == TYPE_WS2812_1CH || _type == TYPE_WS2812_WWA || _type == TYPE_ANALOG_1CH || _type == TYPE_ANALOG_2CH || _type == TYPE_ONOFF) return false;
return true;
}
virtual bool hasWhite() {
if (_type == TYPE_SK6812_RGBW || _type == TYPE_TM1814 || _type == TYPE_WS2812_1CH || _type == TYPE_WS2812_WWA ||
2022-09-02 03:12:03 +02:00
_type == TYPE_ANALOG_1CH || _type == TYPE_ANALOG_2CH || _type == TYPE_ANALOG_4CH || _type == TYPE_ANALOG_5CH || _type == TYPE_NET_DDP_RGBW) return true;
return false;
}
static void setCCT(uint16_t cct) {
_cct = cct;
}
2021-11-27 16:49:42 +01:00
static void setCCTBlend(uint8_t b) {
if (b > 100) b = 100;
_cctBlend = (b * 127) / 100;
//compile-time limiter for hardware that can't power both white channels at max
#ifdef WLED_MAX_CCT_BLEND
if (_cctBlend > WLED_MAX_CCT_BLEND) _cctBlend = WLED_MAX_CCT_BLEND;
#endif
}
2022-03-26 23:20:14 +01:00
inline void setAWMode(uint8_t m) { if (m < 4) _autoWhiteMode = m; }
inline uint8_t getAWMode() { return _autoWhiteMode; }
inline static void setAutoWhiteMode(uint8_t m) { if (m < 4) _gAWM = m; else _gAWM = 255; }
inline static uint8_t getAutoWhiteMode() { return _gAWM; }
2021-10-07 22:57:07 +02:00
bool reversed = false;
2021-01-19 16:51:03 +01:00
2020-12-01 00:33:47 +01:00
protected:
2022-08-21 20:50:24 +02:00
uint8_t _type;
uint8_t _bri;
uint16_t _start;
uint16_t _len;
bool _valid;
bool _needsRefresh;
2022-03-26 23:20:14 +01:00
uint8_t _autoWhiteMode;
static uint8_t _gAWM; // definition in FX_fcn.cpp
static int16_t _cct; // definition in FX_fcn.cpp
static uint8_t _cctBlend; // definition in FX_fcn.cpp
uint32_t autoWhiteCalc(uint32_t c) {
2022-03-26 23:20:14 +01:00
uint8_t aWM = _autoWhiteMode;
if (_gAWM < 255) aWM = _gAWM;
if (aWM == RGBW_MODE_MANUAL_ONLY) return c;
uint8_t w = W(c);
//ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
2022-03-26 23:20:14 +01:00
if (w > 0 && aWM == RGBW_MODE_DUAL) return c;
2021-10-27 08:17:51 +02:00
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
w = r < g ? (r < b ? r : b) : (g < b ? g : b);
2022-03-26 23:20:14 +01:00
if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
2021-10-27 08:17:51 +02:00
return RGBW32(r, g, b, w);
}
2020-12-01 00:33:47 +01:00
};
2020-12-07 01:39:42 +01:00
2020-12-01 00:33:47 +01:00
class BusDigital : public Bus {
public:
BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com) : Bus(bc.type, bc.start, bc.autoWhite), _colorOrderMap(com) {
2021-01-30 20:51:36 +01:00
if (!IS_DIGITAL(bc.type) || !bc.count) return;
if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
2021-01-30 20:51:36 +01:00
_pins[0] = bc.pins[0];
if (IS_2PIN(bc.type)) {
if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
2021-01-16 19:53:08 +01:00
cleanup(); return;
}
2021-07-06 22:08:04 +02:00
_pins[1] = bc.pins[1];
2021-01-16 19:53:08 +01:00
}
2021-01-30 20:51:36 +01:00
reversed = bc.reversed;
2021-10-07 22:57:07 +02:00
_needsRefresh = bc.refreshReq || bc.type == TYPE_TM1814;
2021-04-01 12:53:01 +02:00
_skip = bc.skipAmount; //sacrificial pixels
_len = bc.count + _skip;
2021-10-08 08:30:06 +02:00
_iType = PolyBus::getI(bc.type, _pins, nr);
2020-12-07 01:39:42 +01:00
if (_iType == I_NONE) return;
_busPtr = PolyBus::create(_iType, _pins, _len, nr);
_valid = (_busPtr != nullptr);
2021-01-30 20:51:36 +01:00
_colorOrder = bc.colorOrder;
2021-10-06 14:30:41 +02:00
DEBUG_PRINTF("Successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u)\n",nr, _len, bc.type, _pins[0],_pins[1],_iType);
2020-12-01 00:33:47 +01:00
};
inline void show() {
2020-12-07 01:39:42 +01:00
PolyBus::show(_busPtr, _iType);
}
inline bool canShow() {
2021-01-15 15:43:11 +01:00
return PolyBus::canShow(_busPtr, _iType);
}
void setBrightness(uint8_t b) {
2021-01-19 17:22:37 +01:00
//Fix for turning off onboard LED breaking bus
2021-01-17 00:34:34 +01:00
#ifdef LED_BUILTIN
2021-01-19 16:51:03 +01:00
if (_bri == 0 && b > 0) {
if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) PolyBus::begin(_busPtr, _iType, _pins);
2021-01-19 16:51:03 +01:00
}
2021-01-17 00:34:34 +01:00
#endif
2022-08-21 20:50:24 +02:00
Bus::setBrightness(b);
PolyBus::setBrightness(_busPtr, _iType, b);
}
2021-11-30 22:52:17 +01:00
//If LEDs are skipped, it is possible to use the first as a status LED.
//TODO only show if no new show due in the next 50ms
void setStatusPixel(uint32_t c) {
2021-11-30 16:28:26 +01:00
if (_skip && canShow()) {
PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
2021-11-30 16:28:26 +01:00
PolyBus::show(_busPtr, _iType);
}
}
2020-12-07 01:39:42 +01:00
void setPixelColor(uint16_t pix, uint32_t c) {
if (_type == TYPE_SK6812_RGBW || _type == TYPE_TM1814) c = autoWhiteCalc(c);
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
2021-01-19 16:51:03 +01:00
if (reversed) pix = _len - pix -1;
else pix += _skip;
PolyBus::setPixelColor(_busPtr, _iType, pix, c, _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder));
2021-01-15 15:43:11 +01:00
}
2020-12-07 01:39:42 +01:00
2021-01-15 15:43:11 +01:00
uint32_t getPixelColor(uint16_t pix) {
2021-01-19 16:51:03 +01:00
if (reversed) pix = _len - pix -1;
else pix += _skip;
return PolyBus::getPixelColor(_busPtr, _iType, pix, _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder));
2020-12-07 01:39:42 +01:00
}
inline uint8_t getColorOrder() {
2020-12-01 00:33:47 +01:00
return _colorOrder;
}
uint16_t getLength() {
2021-02-24 20:23:32 +01:00
return _len - _skip;
2021-01-15 15:43:11 +01:00
}
2021-01-19 16:51:03 +01:00
uint8_t getPins(uint8_t* pinArray) {
uint8_t numPins = IS_2PIN(_type) ? 2 : 1;
for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i];
return numPins;
}
2020-12-01 00:33:47 +01:00
void setColorOrder(uint8_t colorOrder) {
// upper nibble contains W swap information
if ((colorOrder & 0x0F) > 5) return;
2020-12-01 00:33:47 +01:00
_colorOrder = colorOrder;
}
inline uint8_t skippedLeds() {
2021-04-01 12:53:01 +02:00
return _skip;
}
inline void reinit() {
PolyBus::begin(_busPtr, _iType, _pins);
2021-01-19 17:22:37 +01:00
}
2021-01-16 19:53:08 +01:00
void cleanup() {
2021-10-08 08:30:06 +02:00
DEBUG_PRINTLN(F("Digital Cleanup."));
2021-01-16 19:53:08 +01:00
PolyBus::cleanup(_busPtr, _iType);
_iType = I_NONE;
_valid = false;
_busPtr = nullptr;
pinManager.deallocatePin(_pins[1], PinOwner::BusDigital);
pinManager.deallocatePin(_pins[0], PinOwner::BusDigital);
2021-01-16 19:53:08 +01:00
}
2021-01-18 20:51:32 +01:00
~BusDigital() {
cleanup();
}
2020-12-01 00:33:47 +01:00
private:
uint8_t _colorOrder = COL_ORDER_GRB;
2020-12-07 01:39:42 +01:00
uint8_t _pins[2] = {255, 255};
uint8_t _iType = I_NONE;
2021-02-24 20:23:32 +01:00
uint8_t _skip = 0;
2020-12-07 01:39:42 +01:00
void * _busPtr = nullptr;
const ColorOrderMap &_colorOrderMap;
2020-12-01 00:33:47 +01:00
};
2020-12-07 01:39:42 +01:00
2020-12-01 00:33:47 +01:00
class BusPwm : public Bus {
public:
BusPwm(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
2021-05-22 00:13:49 +02:00
_valid = false;
2021-02-26 08:34:38 +01:00
if (!IS_PWM(bc.type)) return;
uint8_t numPins = NUM_PWM_PINS(bc.type);
2020-12-07 01:39:42 +01:00
#ifdef ESP8266
analogWriteRange(255); //same range as one RGB channel
analogWriteFreq(WLED_PWM_FREQ);
2020-12-07 01:39:42 +01:00
#else
_ledcStart = pinManager.allocateLedc(numPins);
if (_ledcStart == 255) { //no more free LEDC channels
deallocatePins(); return;
}
#endif
2020-12-01 00:33:47 +01:00
for (uint8_t i = 0; i < numPins; i++) {
uint8_t currentPin = bc.pins[i];
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) {
2020-12-07 01:39:42 +01:00
deallocatePins(); return;
}
_pins[i] = currentPin; //store only after allocatePin() succeeds
2020-12-07 01:39:42 +01:00
#ifdef ESP8266
pinMode(_pins[i], OUTPUT);
#else
ledcSetup(_ledcStart + i, WLED_PWM_FREQ, 8);
2020-12-07 01:39:42 +01:00
ledcAttachPin(_pins[i], _ledcStart + i);
#endif
}
2021-03-20 18:43:05 +01:00
reversed = bc.reversed;
2020-12-07 01:39:42 +01:00
_valid = true;
};
void setPixelColor(uint16_t pix, uint32_t c) {
if (pix != 0 || !_valid) return; //only react to first pixel
2021-11-30 22:52:17 +01:00
if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
if (_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
}
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
uint8_t cct = 0; //0 - full warm white, 255 - full cold white
if (_cct > -1) {
if (_cct >= 1900) cct = (_cct - 1900) >> 5;
else if (_cct < 256) cct = _cct;
} else {
cct = (approximateKelvinFromRGB(c) - 1900) >> 5;
}
2021-10-20 20:29:13 +02:00
2021-11-27 16:49:42 +01:00
uint8_t ww, cw;
2021-12-07 11:03:41 +01:00
#ifdef WLED_USE_IC_CCT
ww = w;
cw = cct;
#else
//0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold)
2021-11-27 16:49:42 +01:00
if (cct < _cctBlend) ww = 255;
else ww = ((255-cct) * 255) / (255 - _cctBlend);
if ((255-cct) < _cctBlend) cw = 255;
else cw = (cct * 255) / (255 - _cctBlend);
2021-11-27 16:49:42 +01:00
ww = (w * ww) / 255; //brightness scaling
cw = (w * cw) / 255;
2021-12-07 11:03:41 +01:00
#endif
2020-12-07 01:39:42 +01:00
switch (_type) {
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
_data[0] = w;
2021-10-20 20:29:13 +02:00
break;
case TYPE_ANALOG_2CH: //warm white + cold white
2021-11-27 16:49:42 +01:00
_data[1] = cw;
_data[0] = ww;
2021-10-20 20:29:13 +02:00
break;
case TYPE_ANALOG_5CH: //RGB + warm white + cold white
2021-11-27 16:49:42 +01:00
_data[4] = cw;
w = ww;
2021-10-20 20:29:13 +02:00
case TYPE_ANALOG_4CH: //RGBW
_data[3] = w;
2020-12-07 01:39:42 +01:00
case TYPE_ANALOG_3CH: //standard dumb RGB
2021-10-20 20:29:13 +02:00
_data[0] = r; _data[1] = g; _data[2] = b;
break;
2020-12-07 01:39:42 +01:00
}
}
//does no index check
uint32_t getPixelColor(uint16_t pix) {
2021-05-22 00:13:49 +02:00
if (!_valid) return 0;
return RGBW32(_data[0], _data[1], _data[2], _data[3]);
2020-12-07 01:39:42 +01:00
}
void show() {
2021-05-22 00:13:49 +02:00
if (!_valid) return;
2020-12-07 01:39:42 +01:00
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
uint8_t scaled = (_data[i] * _bri) / 255;
2021-03-20 18:43:05 +01:00
if (reversed) scaled = 255 - scaled;
2020-12-07 01:39:42 +01:00
#ifdef ESP8266
analogWrite(_pins[i], scaled);
#else
ledcWrite(_ledcStart + i, scaled);
#endif
2020-12-01 00:33:47 +01:00
}
2020-12-07 01:39:42 +01:00
}
2021-01-19 16:51:03 +01:00
uint8_t getPins(uint8_t* pinArray) {
2021-10-06 14:30:41 +02:00
if (!_valid) return 0;
2021-01-19 16:51:03 +01:00
uint8_t numPins = NUM_PWM_PINS(_type);
2021-02-28 22:54:30 +01:00
for (uint8_t i = 0; i < numPins; i++) {
pinArray[i] = _pins[i];
}
2021-01-19 16:51:03 +01:00
return numPins;
}
void cleanup() {
2020-12-07 01:39:42 +01:00
deallocatePins();
2021-01-16 19:53:08 +01:00
}
2020-12-07 01:39:42 +01:00
~BusPwm() {
cleanup();
}
2020-12-01 00:33:47 +01:00
private:
2021-01-16 19:53:08 +01:00
uint8_t _pins[5] = {255, 255, 255, 255, 255};
uint8_t _data[5] = {0};
2020-12-07 01:39:42 +01:00
#ifdef ARDUINO_ARCH_ESP32
uint8_t _ledcStart = 255;
#endif
void deallocatePins() {
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
2021-08-26 09:09:41 +02:00
pinManager.deallocatePin(_pins[i], PinOwner::BusPwm);
2020-12-07 01:39:42 +01:00
if (!pinManager.isPinOk(_pins[i])) continue;
#ifdef ESP8266
digitalWrite(_pins[i], LOW); //turn off PWM interrupt
#else
2021-01-16 19:53:08 +01:00
if (_ledcStart < 16) ledcDetachPin(_pins[i]);
2020-12-07 01:39:42 +01:00
#endif
}
#ifdef ARDUINO_ARCH_ESP32
pinManager.deallocateLedc(_ledcStart, numPins);
#endif
}
2020-12-01 00:33:47 +01:00
};
class BusOnOff : public Bus {
public:
BusOnOff(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
_valid = false;
if (bc.type != TYPE_ONOFF) return;
uint8_t currentPin = bc.pins[0];
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusOnOff)) {
2022-09-16 23:12:57 +02:00
return;
}
_pin = currentPin; //store only after allocatePin() succeeds
pinMode(_pin, OUTPUT);
reversed = bc.reversed;
_valid = true;
};
void setPixelColor(uint16_t pix, uint32_t c) {
if (pix != 0 || !_valid) return; //only react to first pixel
c = autoWhiteCalc(c);
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
_data = bool((r+g+b+w) && _bri) ? 0xFF : 0;
}
uint32_t getPixelColor(uint16_t pix) {
if (!_valid) return 0;
return RGBW32(_data, _data, _data, _data);
}
void show() {
if (!_valid) return;
digitalWrite(_pin, reversed ? !(bool)_data : (bool)_data);
}
uint8_t getPins(uint8_t* pinArray) {
if (!_valid) return 0;
pinArray[0] = _pin;
return 1;
}
void cleanup() {
2022-09-16 23:12:57 +02:00
pinManager.deallocatePin(_pin, PinOwner::BusOnOff);
}
~BusOnOff() {
cleanup();
}
private:
uint8_t _pin = 255;
uint8_t _data = 0;
};
class BusNetwork : public Bus {
public:
BusNetwork(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
_valid = false;
2021-09-27 16:29:38 +02:00
// switch (bc.type) {
// case TYPE_NET_ARTNET_RGB:
// _rgbw = false;
// _UDPtype = 2;
// break;
// case TYPE_NET_E131_RGB:
// _rgbw = false;
// _UDPtype = 1;
// break;
// case TYPE_NET_DDP_RGB:
// _rgbw = false;
// _UDPtype = 0;
// break;
2022-09-02 03:12:03 +02:00
// default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW
_rgbw = bc.type == TYPE_NET_DDP_RGBW;
_UDPtype = 0;
2021-09-27 16:29:38 +02:00
// break;
// }
_UDPchannels = _rgbw ? 4 : 3;
_data = (byte *)malloc(bc.count * _UDPchannels);
if (_data == nullptr) return;
2021-09-27 16:29:38 +02:00
memset(_data, 0, bc.count * _UDPchannels);
_len = bc.count;
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
_broadcastLock = false;
_valid = true;
};
bool hasRGB() { return true; }
bool hasWhite() { return _rgbw; }
void setPixelColor(uint16_t pix, uint32_t c) {
if (!_valid || pix >= _len) return;
2021-12-07 13:37:28 +01:00
if (isRgbw()) c = autoWhiteCalc(c);
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
2021-09-27 16:29:38 +02:00
uint16_t offset = pix * _UDPchannels;
_data[offset] = R(c);
_data[offset+1] = G(c);
_data[offset+2] = B(c);
if (_rgbw) _data[offset+3] = W(c);
}
uint32_t getPixelColor(uint16_t pix) {
if (!_valid || pix >= _len) return 0;
2021-09-27 16:29:38 +02:00
uint16_t offset = pix * _UDPchannels;
return RGBW32(_data[offset], _data[offset+1], _data[offset+2], _rgbw ? (_data[offset+3] << 24) : 0);
}
void show() {
2021-09-27 16:29:38 +02:00
if (!_valid || !canShow()) return;
_broadcastLock = true;
realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw);
_broadcastLock = false;
}
inline bool canShow() {
2021-09-27 16:29:38 +02:00
// this should be a return value from UDP routine if it is still sending data out
return !_broadcastLock;
}
uint8_t getPins(uint8_t* pinArray) {
for (uint8_t i = 0; i < 4; i++) {
pinArray[i] = _client[i];
}
return 4;
}
inline bool isRgbw() {
return _rgbw;
}
inline uint16_t getLength() {
return _len;
}
void cleanup() {
_type = I_NONE;
_valid = false;
if (_data != nullptr) free(_data);
_data = nullptr;
}
~BusNetwork() {
cleanup();
}
private:
IPAddress _client;
2021-09-27 16:29:38 +02:00
uint8_t _UDPtype;
uint8_t _UDPchannels;
bool _rgbw;
bool _broadcastLock;
byte *_data;
};
2021-01-15 15:43:11 +01:00
class BusManager {
public:
2022-03-26 23:20:14 +01:00
BusManager() {};
2021-02-27 00:57:12 +01:00
//utility to get the approx. memory usage of a given BusConfig
2021-03-26 11:52:04 +01:00
static uint32_t memUsage(BusConfig &bc) {
2021-02-27 00:57:12 +01:00
uint8_t type = bc.type;
uint16_t len = bc.count + bc.skipAmount;
if (type > 15 && type < 32) {
2021-02-27 00:57:12 +01:00
#ifdef ESP8266
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
if (type > 29) return len*20; //RGBW
return len*15;
}
if (type > 29) return len*4; //RGBW
return len*3;
#else //ESP32 RMT uses double buffer?
if (type > 29) return len*8; //RGBW
return len*6;
#endif
}
if (type > 31 && type < 48) return 5;
2021-02-27 00:57:12 +01:00
if (type == 44 || type == 45) return len*4; //RGBW
return len*3; //RGB
2021-02-27 00:57:12 +01:00
}
2021-01-15 15:43:11 +01:00
2021-01-30 20:51:36 +01:00
int add(BusConfig &bc) {
2021-01-15 15:43:11 +01:00
if (numBusses >= WLED_MAX_BUSSES) return -1;
2021-10-06 14:30:41 +02:00
if (bc.type >= TYPE_NET_DDP_RGB && bc.type < 96) {
busses[numBusses] = new BusNetwork(bc);
} else if (IS_DIGITAL(bc.type)) {
busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
2022-09-16 23:12:57 +02:00
} else if (bc.type == TYPE_ONOFF) {
busses[numBusses] = new BusOnOff(bc);
2021-01-15 15:43:11 +01:00
} else {
2021-01-30 20:51:36 +01:00
busses[numBusses] = new BusPwm(bc);
2021-01-15 15:43:11 +01:00
}
2021-02-24 20:23:32 +01:00
return numBusses++;
2021-01-15 15:43:11 +01:00
}
//do not call this method from system context (network callback)
2021-01-15 15:43:11 +01:00
void removeAll() {
2021-10-08 08:30:06 +02:00
DEBUG_PRINTLN(F("Removing all."));
//prevents crashes due to deleting busses while in use.
while (!canAllShow()) yield();
2021-01-15 15:43:11 +01:00
for (uint8_t i = 0; i < numBusses; i++) delete busses[i];
numBusses = 0;
}
void show() {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->show();
}
}
2021-11-30 22:52:17 +01:00
void setStatusPixel(uint32_t c) {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->setStatusPixel(c);
}
}
2021-11-30 16:28:26 +01:00
void IRAM_ATTR setPixelColor(uint16_t pix, uint32_t c, int16_t cct=-1) {
2021-01-15 15:43:11 +01:00
for (uint8_t i = 0; i < numBusses; i++) {
Bus* b = busses[i];
uint16_t bstart = b->getStart();
2021-01-18 20:51:32 +01:00
if (pix < bstart || pix >= bstart + b->getLength()) continue;
2021-12-02 13:09:53 +01:00
busses[i]->setPixelColor(pix - bstart, c);
2021-01-15 15:43:11 +01:00
}
}
void setBrightness(uint8_t b) {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->setBrightness(b);
}
}
void setSegmentCCT(int16_t cct, bool allowWBCorrection = false) {
2021-11-27 01:33:48 +01:00
if (cct > 255) cct = 255;
if (cct >= 0) {
//if white balance correction allowed, save as kelvin value instead of 0-255
if (allowWBCorrection) cct = 1900 + (cct << 5);
} else cct = -1;
Bus::setCCT(cct);
}
2021-01-15 15:43:11 +01:00
uint32_t getPixelColor(uint16_t pix) {
for (uint8_t i = 0; i < numBusses; i++) {
Bus* b = busses[i];
uint16_t bstart = b->getStart();
if (pix < bstart || pix >= bstart + b->getLength()) continue;
return b->getPixelColor(pix - bstart);
}
return 0;
}
bool canAllShow() {
for (uint8_t i = 0; i < numBusses; i++) {
2021-01-18 20:51:32 +01:00
if (!busses[i]->canShow()) return false;
2021-01-15 15:43:11 +01:00
}
return true;
}
2021-01-16 19:53:08 +01:00
Bus* getBus(uint8_t busNr) {
if (busNr >= numBusses) return nullptr;
return busses[busNr];
}
inline uint8_t getNumBusses() {
2021-01-16 19:53:08 +01:00
return numBusses;
}
2021-11-03 16:14:01 +01:00
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
2021-02-27 12:06:14 +01:00
uint16_t getTotalLength() {
uint16_t len = 0;
2021-11-03 16:14:01 +01:00
for (uint8_t i=0; i<numBusses; i++) len += busses[i]->getLength();
2021-02-27 12:06:14 +01:00
return len;
}
void updateColorOrderMap(const ColorOrderMap &com) {
memcpy(&colorOrderMap, &com, sizeof(ColorOrderMap));
}
const ColorOrderMap& getColorOrderMap() const {
return colorOrderMap;
}
2021-01-15 15:43:11 +01:00
private:
uint8_t numBusses = 0;
Bus* busses[WLED_MAX_BUSSES];
ColorOrderMap colorOrderMap;
2021-01-15 15:43:11 +01:00
};
#endif