WLED/usermods/multi_relay/usermod_multi_relay.h

829 lines
27 KiB
C
Raw Normal View History

#pragma once
#include "wled.h"
#ifndef MULTI_RELAY_MAX_RELAYS
#define MULTI_RELAY_MAX_RELAYS 4
#else
#if MULTI_RELAY_MAX_RELAYS>16
#undef MULTI_RELAY_MAX_RELAYS
#define MULTI_RELAY_MAX_RELAYS 16
#endif
#endif
#ifndef MULTI_RELAY_PINS
#define MULTI_RELAY_PINS -1
#endif
#define WLED_DEBOUNCE_THRESHOLD 50 //only consider button input of at least 50ms as valid (debouncing)
#define ON true
#define OFF false
#ifndef USERMOD_USE_PCF8574
#undef USE_PCF8574
#define USE_PCF8574 false
#else
#undef USE_PCF8574
#define USE_PCF8574 true
#endif
#ifndef PCF8574_ADDRESS
#define PCF8574_ADDRESS 0x20 // some may start at 0x38
#endif
/*
* This usermod handles multiple relay outputs.
* These outputs complement built-in relay output in a way that the activation can be delayed.
* They can also activate/deactivate in reverse logic independently.
*
* Written and maintained by @blazoncek
*/
typedef struct relay_t {
int8_t pin;
struct { // reduces memory footprint
bool active : 1;
bool mode : 1;
bool state : 1;
bool external : 1;
int8_t button : 4;
};
uint16_t delay;
} Relay;
class MultiRelay : public Usermod {
private:
// array of relays
Relay _relay[MULTI_RELAY_MAX_RELAYS];
uint32_t _switchTimerStart; // switch timer start time
bool _oldMode; // old brightness
bool enabled; // usermod enabled
bool initDone; // status of initialisation
bool usePcf8574;
uint8_t addrPcf8574;
bool HAautodiscovery;
uint16_t periodicBroadcastSec;
unsigned long lastBroadcast;
2022-01-21 16:08:02 +01:00
// strings to reduce flash memory usage (used more than twice)
static const char _name[];
static const char _enabled[];
static const char _relay_str[];
static const char _delay_str[];
static const char _activeHigh[];
static const char _external[];
static const char _button[];
2022-01-21 16:08:02 +01:00
static const char _broadcast[];
static const char _HAautodiscovery[];
static const char _pcf8574[];
static const char _pcfAddress[];
void handleOffTimer();
void InitHtmlAPIHandle();
int getValue(String data, char separator, int index);
uint8_t getActiveRelayCount();
byte IOexpanderWrite(byte address, byte _data);
byte IOexpanderRead(int address);
void publishMqtt(int relay);
#ifndef WLED_DISABLE_MQTT
void publishHomeAssistantAutodiscovery();
#endif
public:
/**
* constructor
*/
MultiRelay();
/**
* desctructor
*/
//~MultiRelay() {}
/**
* Enable/Disable the usermod
*/
inline void enable(bool enable) { enabled = enable; }
/**
* Get usermod enabled/disabled state
*/
inline bool isEnabled() { return enabled; }
/**
* getId() allows you to optionally give your V2 usermod an unique ID (please define it in const.h!).
* This could be used in the future for the system to determine whether your usermod is installed.
*/
inline uint16_t getId() { return USERMOD_ID_MULTI_RELAY; }
/**
* switch relay on/off
*/
void switchRelay(uint8_t relay, bool mode);
/**
* toggle relay
*/
inline void toggleRelay(uint8_t relay) {
switchRelay(relay, !_relay[relay].state);
}
/**
* setup() is called once at boot. WiFi is not yet connected at this point.
* You can use it to initialize variables, sensors or similar.
*/
void setup();
/**
* connected() is called every time the WiFi is (re)connected
* Use it to initialize network interfaces
*/
inline void connected() { InitHtmlAPIHandle(); }
/**
* loop() is called continuously. Here you can check for events, read sensors, etc.
*/
void loop();
#ifndef WLED_DISABLE_MQTT
bool onMqttMessage(char* topic, char* payload);
void onMqttConnect(bool sessionPresent);
#endif
/**
* handleButton() can be used to override default button behaviour. Returning true
* will prevent button working in a default way.
* Replicating button.cpp
*/
bool handleButton(uint8_t b);
/**
* addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API.
*/
void addToJsonInfo(JsonObject &root);
/**
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
void addToJsonState(JsonObject &root);
/**
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
void readFromJsonState(JsonObject &root);
/**
* provide the changeable values
*/
void addToConfig(JsonObject &root);
void appendConfigData();
/**
* restore the changeable values
* readFromConfig() is called before setup() to populate properties from values stored in cfg.json
*
* The function should return true if configuration was successfully loaded or false if there was no configuration.
*/
bool readFromConfig(JsonObject &root);
};
// class implementetion
void MultiRelay::publishMqtt(int relay) {
#ifndef WLED_DISABLE_MQTT
//Check if MQTT Connected, otherwise it will crash the 8266
if (WLED_MQTT_CONNECTED){
char subuf[64];
sprintf_P(subuf, PSTR("%s/relay/%d"), mqttDeviceTopic, relay);
mqtt->publish(subuf, 0, false, _relay[relay].state ? "on" : "off");
}
#endif
}
/**
* switch off the strip if the delay has elapsed
*/
void MultiRelay::handleOffTimer() {
unsigned long now = millis();
bool activeRelays = false;
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].active && _switchTimerStart > 0 && now - _switchTimerStart > (_relay[i].delay*1000)) {
if (!_relay[i].external) toggleRelay(i);
_relay[i].active = false;
} else if (periodicBroadcastSec && now - lastBroadcast > (periodicBroadcastSec*1000)) {
if (_relay[i].pin>=0) publishMqtt(i);
}
activeRelays = activeRelays || _relay[i].active;
}
if (!activeRelays) _switchTimerStart = 0;
if (periodicBroadcastSec && now - lastBroadcast > (periodicBroadcastSec*1000)) lastBroadcast = now;
}
/**
* HTTP API handler
* borrowed from:
* https://github.com/gsieben/WLED/blob/master/usermods/GeoGab-Relays/usermod_GeoGab.h
*/
#define GEOGABVERSION "0.1.3"
void MultiRelay::InitHtmlAPIHandle() { // https://github.com/me-no-dev/ESPAsyncWebServer
DEBUG_PRINTLN(F("Relays: Initialize HTML API"));
server.on("/relays", HTTP_GET, [this](AsyncWebServerRequest *request) {
DEBUG_PRINTLN("Relays: HTML API");
String janswer;
String error = "";
//int params = request->params();
janswer = F("{\"NoOfRelays\":");
janswer += String(MULTI_RELAY_MAX_RELAYS) + ",";
if (getActiveRelayCount()) {
// Commands
if(request->hasParam("switch")) {
/**** Switch ****/
AsyncWebParameter* p = request->getParam("switch");
// Get Values
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
int value = getValue(p->value(), ',', i);
if (value==-1) {
error = F("There must be as many arguments as relays");
} else {
// Switch
if (_relay[i].external) switchRelay(i, (bool)value);
}
}
} else if(request->hasParam("toggle")) {
/**** Toggle ****/
AsyncWebParameter* p = request->getParam("toggle");
// Get Values
for (int i=0;i<MULTI_RELAY_MAX_RELAYS;i++) {
int value = getValue(p->value(), ',', i);
if (value==-1) {
error = F("There must be as many arguments as relays");
} else {
// Toggle
if (value && _relay[i].external) toggleRelay(i);
}
}
} else {
error = F("No valid command found");
}
} else {
error = F("No active relays");
}
// Status response
char sbuf[16];
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
sprintf_P(sbuf, PSTR("\"%d\":%d,"), i, (_relay[i].pin<0 ? -1 : (int)_relay[i].state));
janswer += sbuf;
}
janswer += F("\"error\":\"");
janswer += error;
janswer += F("\",");
janswer += F("\"SW Version\":\"");
janswer += String(GEOGABVERSION);
janswer += F("\"}");
request->send(200, "application/json", janswer);
});
}
int MultiRelay::getValue(String data, char separator, int index) {
int found = 0;
int strIndex[] = {0, -1};
int maxIndex = data.length()-1;
for(int i=0; i<=maxIndex && found<=index; i++){
if(data.charAt(i)==separator || i==maxIndex){
found++;
strIndex[0] = strIndex[1]+1;
strIndex[1] = (i == maxIndex) ? i+1 : i;
}
}
return found>index ? data.substring(strIndex[0], strIndex[1]).toInt() : -1;
}
//Write a byte to the IO expander
byte MultiRelay::IOexpanderWrite(byte address, byte _data ) {
Wire.beginTransmission(addrPcf8574 + address);
Wire.write(_data);
return Wire.endTransmission();
}
//Read a byte from the IO expander
byte MultiRelay::IOexpanderRead(int address) {
byte _data = 0;
Wire.requestFrom(addrPcf8574 + address, 1);
if (Wire.available()) {
_data = Wire.read();
}
return _data;
}
// public methods
MultiRelay::MultiRelay()
: _switchTimerStart(0)
, enabled(false)
, initDone(false)
, usePcf8574(USE_PCF8574)
, addrPcf8574(PCF8574_ADDRESS)
, HAautodiscovery(false)
, periodicBroadcastSec(60)
, lastBroadcast(0)
{
const int8_t defPins[] = {MULTI_RELAY_PINS};
for (size_t i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
_relay[i].pin = i<sizeof(defPins) ? defPins[i] : -1;
_relay[i].delay = 0;
_relay[i].mode = false;
_relay[i].active = false;
_relay[i].state = false;
_relay[i].external = false;
_relay[i].button = -1;
}
}
/**
* switch relay on/off
*/
void MultiRelay::switchRelay(uint8_t relay, bool mode) {
if (relay>=MULTI_RELAY_MAX_RELAYS || (_relay[relay].pin<0 && !usePcf8574)) return;
_relay[relay].state = mode;
if (usePcf8574) {
byte expander = relay/8;
uint16_t state = 0;
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) state |= (uint16_t)_relay[i].state << i; // fill relay states for all pins
state = (mode ? !_relay[relay].mode : _relay[relay].mode) ? state | (1<<relay) : state & ~(1<<relay); // take into account invert mode
IOexpanderWrite(expander, state>>(8*expander));
DEBUG_PRINT(F("PCF8574 Writing to ")); DEBUG_PRINT(addrPcf8574 + expander); DEBUG_PRINT(F(" with data ")); DEBUG_PRINTLN(state>>(8*expander));
} else {
pinMode(_relay[relay].pin, OUTPUT);
digitalWrite(_relay[relay].pin, mode ? !_relay[relay].mode : _relay[relay].mode);
}
publishMqtt(relay);
}
uint8_t MultiRelay::getActiveRelayCount() {
uint8_t count = 0;
if (usePcf8574) return MULTI_RELAY_MAX_RELAYS; // we don't know how many there are
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) if (_relay[i].pin>=0) count++;
return count;
}
//Functions called by WLED
#ifndef WLED_DISABLE_MQTT
/**
* handling of MQTT message
* topic only contains stripped topic (part after /wled/MAC)
* topic should look like: /relay/X/command; where X is relay number, 0 based
*/
bool MultiRelay::onMqttMessage(char* topic, char* payload) {
if (strlen(topic) > 8 && strncmp_P(topic, PSTR("/relay/"), 7) == 0 && strncmp_P(topic+8, PSTR("/command"), 8) == 0) {
uint8_t relay = strtoul(topic+7, NULL, 10);
if (relay<MULTI_RELAY_MAX_RELAYS) {
String action = payload;
if (action == "on") {
if (_relay[relay].external) switchRelay(relay, true);
return true;
} else if (action == "off") {
if (_relay[relay].external) switchRelay(relay, false);
return true;
} else if (action == "toggle") {
if (_relay[relay].external) toggleRelay(relay);
return true;
}
}
}
return false;
}
/**
* subscribe to MQTT topic for controlling relays
*/
void MultiRelay::onMqttConnect(bool sessionPresent) {
//(re)subscribe to required topics
char subuf[64];
if (mqttDeviceTopic[0] != 0) {
strcpy(subuf, mqttDeviceTopic);
strcat_P(subuf, PSTR("/relay/#"));
mqtt->subscribe(subuf, 0);
if (HAautodiscovery) publishHomeAssistantAutodiscovery();
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].pin<0) continue;
publishMqtt(i); //publish current state
}
}
}
void MultiRelay::publishHomeAssistantAutodiscovery() {
for (int i = 0; i < MULTI_RELAY_MAX_RELAYS; i++) {
char uid[24], json_str[1024], buf[128];
size_t payload_size;
sprintf_P(uid, PSTR("%s_sw%d"), escapedMac.c_str(), i);
if (_relay[i].pin >= 0 && _relay[i].external) {
StaticJsonDocument<1024> json;
sprintf_P(buf, PSTR("%s Switch %d"), serverDescription, i); //max length: 33 + 8 + 3 = 44
json[F("name")] = buf;
sprintf_P(buf, PSTR("%s/relay/%d"), mqttDeviceTopic, i); //max length: 33 + 7 + 3 = 43
json["~"] = buf;
strcat_P(buf, PSTR("/command"));
mqtt->subscribe(buf, 0);
json[F("stat_t")] = "~";
json[F("cmd_t")] = F("~/command");
json[F("pl_off")] = "off";
json[F("pl_on")] = "on";
json[F("uniq_id")] = uid;
strcpy(buf, mqttDeviceTopic); //max length: 33 + 7 = 40
strcat_P(buf, PSTR("/status"));
json[F("avty_t")] = buf;
json[F("pl_avail")] = F("online");
json[F("pl_not_avail")] = F("offline");
//TODO: dev
payload_size = serializeJson(json, json_str);
} else {
//Unpublish disabled or internal relays
json_str[0] = 0;
payload_size = 0;
}
sprintf_P(buf, PSTR("homeassistant/switch/%s/config"), uid);
mqtt->publish(buf, 0, true, json_str, payload_size);
}
}
#endif
/**
* setup() is called once at boot. WiFi is not yet connected at this point.
* You can use it to initialize variables, sensors or similar.
*/
void MultiRelay::setup() {
// pins retrieved from cfg.json (readFromConfig()) prior to running setup()
// if we want PCF8574 expander I2C pins need to be valid
if (i2c_sda == i2c_scl && i2c_sda == -1) usePcf8574 = false;
if (usePcf8574) {
uint16_t state = 0;
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) state |= (uint16_t)(_relay[i].external ? (_relay[i].mode ? !_relay[i].state : _relay[i].state) : (_relay[i].mode ? !offMode : offMode)) << i; // fill relay states for all pins
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i += 8) {
byte expander = i/8;
IOexpanderWrite(expander, state>>(8*expander)); // init expander (set all outputs)
delay(1);
}
DEBUG_PRINTLN(F("PCF8574(s) inited."));
} else {
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].pin<0) continue;
if (!pinManager.allocatePin(_relay[i].pin,true, PinOwner::UM_MultiRelay)) {
_relay[i].pin = -1; // allocation failed
} else {
if (!_relay[i].external) _relay[i].state = !offMode;
switchRelay(i, _relay[i].state);
_relay[i].active = false;
}
}
}
_oldMode = offMode;
initDone = true;
}
/**
* loop() is called continuously. Here you can check for events, read sensors, etc.
*/
void MultiRelay::loop() {
yield();
if (!enabled || strip.isUpdating()) return;
static unsigned long lastUpdate = 0;
if (millis() - lastUpdate < 100) return; // update only 10 times/s
lastUpdate = millis();
//set relay when LEDs turn on
if (_oldMode != offMode) {
_oldMode = offMode;
_switchTimerStart = millis();
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if ((_relay[i].pin>=0 || usePcf8574) && !_relay[i].external) _relay[i].active = true;
}
}
handleOffTimer();
}
/**
* handleButton() can be used to override default button behaviour. Returning true
* will prevent button working in a default way.
* Replicating button.cpp
*/
bool MultiRelay::handleButton(uint8_t b) {
yield();
if (!enabled
|| buttonType[b] == BTN_TYPE_NONE
|| buttonType[b] == BTN_TYPE_RESERVED
|| buttonType[b] == BTN_TYPE_PIR_SENSOR
|| buttonType[b] == BTN_TYPE_ANALOG
|| buttonType[b] == BTN_TYPE_ANALOG_INVERTED) {
return false;
}
bool handled = false;
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].button == b && _relay[i].external) {
handled = true;
}
}
if (!handled) return false;
unsigned long now = millis();
//button is not momentary, but switch. This is only suitable on pins whose on-boot state does not matter (NOT gpio0)
if (buttonType[b] == BTN_TYPE_SWITCH) {
//handleSwitch(b);
if (buttonPressedBefore[b] != isButtonPressed(b)) {
buttonPressedTime[b] = now;
buttonPressedBefore[b] = !buttonPressedBefore[b];
}
if (buttonLongPressed[b] == buttonPressedBefore[b]) return handled;
if (now - buttonPressedTime[b] > WLED_DEBOUNCE_THRESHOLD) { //fire edge event only after 50ms without change (debounce)
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].button == b) {
switchRelay(i, buttonPressedBefore[b]);
buttonLongPressed[b] = buttonPressedBefore[b]; //save the last "long term" switch state
}
}
}
return handled;
}
//momentary button logic
if (isButtonPressed(b)) { //pressed
if (!buttonPressedBefore[b]) buttonPressedTime[b] = now;
buttonPressedBefore[b] = true;
if (now - buttonPressedTime[b] > 600) { //long press
//longPressAction(b); //not exposed
//handled = false; //use if you want to pass to default behaviour
buttonLongPressed[b] = true;
}
} else if (!isButtonPressed(b) && buttonPressedBefore[b]) { //released
long dur = now - buttonPressedTime[b];
if (dur < WLED_DEBOUNCE_THRESHOLD) {
buttonPressedBefore[b] = false;
return handled;
} //too short "press", debounce
bool doublePress = buttonWaitTime[b]; //did we have short press before?
buttonWaitTime[b] = 0;
if (!buttonLongPressed[b]) { //short press
// if this is second release within 350ms it is a double press (buttonWaitTime!=0)
if (doublePress) {
//doublePressAction(b); //not exposed
//handled = false; //use if you want to pass to default behaviour
} else {
buttonWaitTime[b] = now;
}
}
buttonPressedBefore[b] = false;
buttonLongPressed[b] = false;
}
// if 350ms elapsed since last press/release it is a short press
if (buttonWaitTime[b] && now - buttonWaitTime[b] > 350 && !buttonPressedBefore[b]) {
buttonWaitTime[b] = 0;
//shortPressAction(b); //not exposed
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].button == b) {
toggleRelay(i);
}
}
}
return handled;
}
/**
* addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API.
*/
void MultiRelay::addToJsonInfo(JsonObject &root) {
if (enabled) {
JsonObject user = root["u"];
if (user.isNull())
user = root.createNestedObject("u");
JsonArray infoArr = user.createNestedArray(FPSTR(_name)); //name
infoArr.add(String(getActiveRelayCount()));
infoArr.add(F(" relays"));
String uiDomString;
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if ((_relay[i].pin<0 && !usePcf8574) || !_relay[i].external) continue;
uiDomString = F("Relay "); uiDomString += i;
JsonArray infoArr = user.createNestedArray(uiDomString); // timer value
uiDomString = F("<button class=\"btn btn-xs\" onclick=\"requestJson({");
uiDomString += FPSTR(_name);
uiDomString += F(":{");
uiDomString += FPSTR(_relay_str);
uiDomString += F(":");
uiDomString += i;
uiDomString += F(",on:");
uiDomString += _relay[i].state ? "false" : "true";
uiDomString += F("}});\">");
uiDomString += F("<i class=\"icons");
uiDomString += _relay[i].state ? F(" on") : F(" off");
uiDomString += F("\">&#xe08f;</i></button>");
infoArr.add(uiDomString);
}
}
}
/**
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
void MultiRelay::addToJsonState(JsonObject &root) {
if (!initDone || !enabled) return; // prevent crash on boot applyPreset()
JsonObject multiRelay = root[FPSTR(_name)];
if (multiRelay.isNull()) {
multiRelay = root.createNestedObject(FPSTR(_name));
}
#if MULTI_RELAY_MAX_RELAYS > 1
JsonArray rel_arr = multiRelay.createNestedArray(F("relays"));
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].pin < 0) continue;
JsonObject relay = rel_arr.createNestedObject();
relay[FPSTR(_relay_str)] = i;
relay[F("state")] = _relay[i].state;
}
#else
multiRelay[FPSTR(_relay_str)] = 0;
multiRelay[F("state")] = _relay[0].state;
#endif
}
/**
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
void MultiRelay::readFromJsonState(JsonObject &root) {
if (!initDone || !enabled) return; // prevent crash on boot applyPreset()
JsonObject usermod = root[FPSTR(_name)];
if (!usermod.isNull()) {
if (usermod[FPSTR(_relay_str)].is<int>() && usermod[FPSTR(_relay_str)].as<int>()>=0) {
int rly = usermod[FPSTR(_relay_str)].as<int>();
if (usermod["on"].is<bool>()) {
switchRelay(rly, usermod["on"].as<bool>());
} else if (usermod["on"].is<const char*>() && usermod["on"].as<const char*>()[0] == 't') {
toggleRelay(rly);
}
}
} else if (root[FPSTR(_name)].is<JsonArray>()) {
JsonArray relays = root[FPSTR(_name)].as<JsonArray>();
for (JsonVariant r : relays) {
if (r[FPSTR(_relay_str)].is<int>() && r[FPSTR(_relay_str)].as<int>()>=0) {
int rly = r[FPSTR(_relay_str)].as<int>();
if (r["on"].is<bool>()) {
switchRelay(rly, r["on"].as<bool>());
} else if (r["on"].is<const char*>() && r["on"].as<const char*>()[0] == 't') {
toggleRelay(rly);
}
}
}
}
}
/**
* provide the changeable values
*/
void MultiRelay::addToConfig(JsonObject &root) {
JsonObject top = root.createNestedObject(FPSTR(_name));
top[FPSTR(_enabled)] = enabled;
top[FPSTR(_pcf8574)] = usePcf8574;
top[FPSTR(_pcfAddress)] = addrPcf8574;
top[FPSTR(_broadcast)] = periodicBroadcastSec;
top[FPSTR(_HAautodiscovery)] = HAautodiscovery;
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
String parName = FPSTR(_relay_str); parName += '-'; parName += i;
JsonObject relay = top.createNestedObject(parName);
relay["pin"] = _relay[i].pin;
relay[FPSTR(_activeHigh)] = _relay[i].mode;
relay[FPSTR(_delay_str)] = _relay[i].delay;
relay[FPSTR(_external)] = _relay[i].external;
relay[FPSTR(_button)] = _relay[i].button;
}
DEBUG_PRINTLN(F("MultiRelay config saved."));
}
void MultiRelay::appendConfigData() {
oappend(SET_F("addInfo('MultiRelay:first-PCF8574',1,'<i>(not hex!)</i>','address');"));
oappend(SET_F("addInfo('MultiRelay:broadcast-sec',1,'(MQTT message)');"));
oappend(SET_F("addInfo('MultiRelay:relay-0:pin',1,'(use -1 for PCF8574)');"));
}
/**
* restore the changeable values
* readFromConfig() is called before setup() to populate properties from values stored in cfg.json
*
* The function should return true if configuration was successfully loaded or false if there was no configuration.
*/
bool MultiRelay::readFromConfig(JsonObject &root) {
int8_t oldPin[MULTI_RELAY_MAX_RELAYS];
JsonObject top = root[FPSTR(_name)];
if (top.isNull()) {
DEBUG_PRINT(FPSTR(_name));
DEBUG_PRINTLN(F(": No config found. (Using defaults.)"));
return false;
}
//bool configComplete = !top.isNull();
//configComplete &= getJsonValue(top[FPSTR(_enabled)], enabled);
enabled = top[FPSTR(_enabled)] | enabled;
usePcf8574 = top[FPSTR(_pcf8574)] | usePcf8574;
addrPcf8574 = top[FPSTR(_pcfAddress)] | addrPcf8574;
// if I2C is not globally initialised just ignore
if (i2c_sda == i2c_scl && i2c_sda == -1) usePcf8574 = false;
periodicBroadcastSec = top[FPSTR(_broadcast)] | periodicBroadcastSec;
periodicBroadcastSec = min(900,max(0,(int)periodicBroadcastSec));
HAautodiscovery = top[FPSTR(_HAautodiscovery)] | HAautodiscovery;
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
String parName = FPSTR(_relay_str); parName += '-'; parName += i;
oldPin[i] = _relay[i].pin;
_relay[i].pin = top[parName]["pin"] | _relay[i].pin;
_relay[i].mode = top[parName][FPSTR(_activeHigh)] | _relay[i].mode;
_relay[i].external = top[parName][FPSTR(_external)] | _relay[i].external;
_relay[i].delay = top[parName][FPSTR(_delay_str)] | _relay[i].delay;
_relay[i].button = top[parName][FPSTR(_button)] | _relay[i].button;
// begin backwards compatibility (beta) remove when 0.13 is released
parName += '-';
_relay[i].pin = top[parName+"pin"] | _relay[i].pin;
_relay[i].mode = top[parName+FPSTR(_activeHigh)] | _relay[i].mode;
_relay[i].external = top[parName+FPSTR(_external)] | _relay[i].external;
_relay[i].delay = top[parName+FPSTR(_delay_str)] | _relay[i].delay;
// end compatibility
_relay[i].delay = min(600,max(0,abs((int)_relay[i].delay))); // bounds checking max 10min
}
DEBUG_PRINT(FPSTR(_name));
if (!initDone) {
// reading config prior to setup()
DEBUG_PRINTLN(F(" config loaded."));
} else {
// deallocate all pins 1st
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++)
if (oldPin[i]>=0) {
pinManager.deallocatePin(oldPin[i], PinOwner::UM_MultiRelay);
}
// allocate new pins
for (int i=0; i<MULTI_RELAY_MAX_RELAYS; i++) {
if (_relay[i].pin>=0 && pinManager.allocatePin(_relay[i].pin, true, PinOwner::UM_MultiRelay)) {
if (!_relay[i].external) {
_relay[i].state = !offMode;
switchRelay(i, _relay[i].state);
_oldMode = offMode;
}
} else {
_relay[i].pin = -1;
}
_relay[i].active = false;
}
DEBUG_PRINTLN(F(" config (re)loaded."));
}
// use "return !top["newestParameter"].isNull();" when updating Usermod with new features
return !top[FPSTR(_pcf8574)].isNull();
}
// strings to reduce flash memory usage (used more than twice)
const char MultiRelay::_name[] PROGMEM = "MultiRelay";
const char MultiRelay::_enabled[] PROGMEM = "enabled";
const char MultiRelay::_relay_str[] PROGMEM = "relay";
const char MultiRelay::_delay_str[] PROGMEM = "delay-s";
const char MultiRelay::_activeHigh[] PROGMEM = "active-high";
const char MultiRelay::_external[] PROGMEM = "external";
const char MultiRelay::_button[] PROGMEM = "button";
const char MultiRelay::_broadcast[] PROGMEM = "broadcast-sec";
const char MultiRelay::_HAautodiscovery[] PROGMEM = "HA-autodiscovery";
const char MultiRelay::_pcf8574[] PROGMEM = "use-PCF8574";
const char MultiRelay::_pcfAddress[] PROGMEM = "first-PCF8574";