WLED/wled00/src/dependencies/json/ArduinoJson-v6.h

5664 lines
167 KiB
C
Raw Normal View History

// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2019
// MIT License
#pragma once
#ifdef __cplusplus
#ifndef ARDUINOJSON_DEBUG
#ifdef __clang__
#pragma clang system_header
#elif defined __GNUC__
#pragma GCC system_header
#endif
#endif
#define ARDUINOJSON_VERSION "6.11.0"
#define ARDUINOJSON_VERSION_MAJOR 6
#define ARDUINOJSON_VERSION_MINOR 11
#define ARDUINOJSON_VERSION_REVISION 0
#if defined(_MSC_VER)
#define ARDUINOJSON_HAS_INT64 1
#else
#define ARDUINOJSON_HAS_INT64 0
#endif
#if __cplusplus >= 201103L
#define ARDUINOJSON_HAS_LONG_LONG 1
#define ARDUINOJSON_HAS_NULLPTR 1
#else
#define ARDUINOJSON_HAS_LONG_LONG 0
#define ARDUINOJSON_HAS_NULLPTR 0
#endif
#ifndef ARDUINOJSON_EMBEDDED_MODE
#if defined(ARDUINO) || defined(__IAR_SYSTEMS_ICC__) || defined(__XC) || \
defined(__ARMCC_VERSION)
#define ARDUINOJSON_EMBEDDED_MODE 1
#else
#define ARDUINOJSON_EMBEDDED_MODE 0
#endif
#endif
#if ARDUINOJSON_EMBEDDED_MODE
#ifndef ARDUINOJSON_USE_DOUBLE
#define ARDUINOJSON_USE_DOUBLE 0
#endif
#ifndef ARDUINOJSON_USE_LONG_LONG
#define ARDUINOJSON_USE_LONG_LONG 0
#endif
#ifndef ARDUINOJSON_ENABLE_STD_STRING
#define ARDUINOJSON_ENABLE_STD_STRING 0
#endif
#ifndef ARDUINOJSON_ENABLE_STD_STREAM
#define ARDUINOJSON_ENABLE_STD_STREAM 0
#endif
#ifndef ARDUINOJSON_DEFAULT_NESTING_LIMIT
#define ARDUINOJSON_DEFAULT_NESTING_LIMIT 10
#endif
#else // ARDUINOJSON_EMBEDDED_MODE
#ifndef ARDUINOJSON_USE_DOUBLE
#define ARDUINOJSON_USE_DOUBLE 1
#endif
#ifndef ARDUINOJSON_USE_LONG_LONG
#if ARDUINOJSON_HAS_LONG_LONG || ARDUINOJSON_HAS_INT64
#define ARDUINOJSON_USE_LONG_LONG 1
#else
#define ARDUINOJSON_USE_LONG_LONG 0
#endif
#endif
#ifndef ARDUINOJSON_ENABLE_STD_STRING
#define ARDUINOJSON_ENABLE_STD_STRING 1
#endif
#ifndef ARDUINOJSON_ENABLE_STD_STREAM
#define ARDUINOJSON_ENABLE_STD_STREAM 1
#endif
#ifndef ARDUINOJSON_DEFAULT_NESTING_LIMIT
#define ARDUINOJSON_DEFAULT_NESTING_LIMIT 50
#endif
#endif // ARDUINOJSON_EMBEDDED_MODE
#ifdef ARDUINO
#ifndef ARDUINOJSON_ENABLE_ARDUINO_STRING
#define ARDUINOJSON_ENABLE_ARDUINO_STRING 1
#endif
#ifndef ARDUINOJSON_ENABLE_ARDUINO_STREAM
#define ARDUINOJSON_ENABLE_ARDUINO_STREAM 1
#endif
#ifndef ARDUINOJSON_ENABLE_ARDUINO_PRINT
#define ARDUINOJSON_ENABLE_ARDUINO_PRINT 1
#endif
#else // ARDUINO
#ifndef ARDUINOJSON_ENABLE_ARDUINO_STRING
#define ARDUINOJSON_ENABLE_ARDUINO_STRING 0
#endif
#ifndef ARDUINOJSON_ENABLE_ARDUINO_STREAM
#define ARDUINOJSON_ENABLE_ARDUINO_STREAM 0
#endif
#ifndef ARDUINOJSON_ENABLE_ARDUINO_PRINT
#define ARDUINOJSON_ENABLE_ARDUINO_PRINT 0
#endif
#endif // ARDUINO
#ifndef ARDUINOJSON_ENABLE_PROGMEM
#ifdef PROGMEM
#define ARDUINOJSON_ENABLE_PROGMEM 1
#else
#define ARDUINOJSON_ENABLE_PROGMEM 0
#endif
#endif
#ifndef ARDUINOJSON_DECODE_UNICODE
#define ARDUINOJSON_DECODE_UNICODE 0
#endif
#ifndef ARDUINOJSON_ENABLE_NAN
#define ARDUINOJSON_ENABLE_NAN 0
#endif
#ifndef ARDUINOJSON_ENABLE_INFINITY
#define ARDUINOJSON_ENABLE_INFINITY 0
#endif
#ifndef ARDUINOJSON_POSITIVE_EXPONENTIATION_THRESHOLD
#define ARDUINOJSON_POSITIVE_EXPONENTIATION_THRESHOLD 1e7
#endif
#ifndef ARDUINOJSON_NEGATIVE_EXPONENTIATION_THRESHOLD
#define ARDUINOJSON_NEGATIVE_EXPONENTIATION_THRESHOLD 1e-5
#endif
#ifndef ARDUINOJSON_LITTLE_ENDIAN
#if defined(_MSC_VER) || \
(defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || \
defined(__LITTLE_ENDIAN__) || defined(__i386) || defined(__x86_64)
#define ARDUINOJSON_LITTLE_ENDIAN 1
#else
#define ARDUINOJSON_LITTLE_ENDIAN 0
#endif
#endif
#ifndef ARDUINOJSON_TAB
#define ARDUINOJSON_TAB " "
#endif
#define ARDUINOJSON_DO_CONCAT(A, B) A##B
#define ARDUINOJSON_CONCAT2(A, B) ARDUINOJSON_DO_CONCAT(A, B)
#define ARDUINOJSON_CONCAT3(A, B, C) \
ARDUINOJSON_CONCAT2(A, ARDUINOJSON_CONCAT2(B, C))
#define ARDUINOJSON_CONCAT4(A, B, C, D) \
ARDUINOJSON_CONCAT2(ARDUINOJSON_CONCAT2(A, B), ARDUINOJSON_CONCAT2(C, D))
#define ARDUINOJSON_CONCAT8(A, B, C, D, E, F, G, H) \
ARDUINOJSON_CONCAT2(ARDUINOJSON_CONCAT4(A, B, C, D), \
ARDUINOJSON_CONCAT4(E, F, G, H))
#define ARDUINOJSON_CONCAT10(A, B, C, D, E, F, G, H, I, J) \
ARDUINOJSON_CONCAT8(A, B, C, D, E, F, G, ARDUINOJSON_CONCAT3(H, I, J))
#define ARDUINOJSON_NAMESPACE \
ARDUINOJSON_CONCAT10( \
ArduinoJson, ARDUINOJSON_VERSION_MAJOR, ARDUINOJSON_VERSION_MINOR, \
ARDUINOJSON_VERSION_REVISION, _, ARDUINOJSON_USE_LONG_LONG, \
ARDUINOJSON_USE_DOUBLE, ARDUINOJSON_DECODE_UNICODE, \
ARDUINOJSON_ENABLE_NAN, ARDUINOJSON_ENABLE_INFINITY)
#ifdef ARDUINOJSON_DEBUG
#include <assert.h>
#define ARDUINOJSON_ASSERT(X) assert(X)
#else
#define ARDUINOJSON_ASSERT(X) ((void)0)
#endif
#include <stddef.h> // for size_t
namespace ARDUINOJSON_NAMESPACE {
template <size_t X, size_t Y, bool MaxIsX = (X > Y)>
struct Max {};
template <size_t X, size_t Y>
struct Max<X, Y, true> {
static const size_t value = X;
};
template <size_t X, size_t Y>
struct Max<X, Y, false> {
static const size_t value = Y;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
class not_null {
public:
explicit not_null(T ptr) : _ptr(ptr) {
ARDUINOJSON_ASSERT(ptr != NULL);
}
T get() const {
ARDUINOJSON_ASSERT(_ptr != NULL);
return _ptr;
}
private:
T _ptr;
};
template <typename T>
not_null<T> make_not_null(T ptr) {
ARDUINOJSON_ASSERT(ptr != NULL);
return not_null<T>(ptr);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <bool Condition, class TrueType, class FalseType>
struct conditional {
typedef TrueType type;
};
template <class TrueType, class FalseType>
struct conditional<false, TrueType, FalseType> {
typedef FalseType type;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <bool Condition, typename T = void>
struct enable_if {};
template <typename T>
struct enable_if<true, T> {
typedef T type;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T, T v>
struct integral_constant {
static const T value = v;
};
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
struct is_array : false_type {};
template <typename T>
struct is_array<T[]> : true_type {};
template <typename T, size_t N>
struct is_array<T[N]> : true_type {};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TBase, typename TDerived>
class is_base_of {
protected: // <- to avoid GCC's "all member functions in class are private"
typedef char Yes[1];
typedef char No[2];
static Yes &probe(const TBase *);
static No &probe(...);
public:
static const bool value =
sizeof(probe(reinterpret_cast<TDerived *>(0))) == sizeof(Yes);
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
struct is_const : false_type {};
template <typename T>
struct is_const<const T> : true_type {};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename>
struct is_floating_point : false_type {};
template <>
struct is_floating_point<float> : true_type {};
template <>
struct is_floating_point<double> : true_type {};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T, typename U>
struct is_same : false_type {};
template <typename T>
struct is_same<T, T> : true_type {};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
struct is_integral {
static const bool value =
is_same<T, signed char>::value || is_same<T, unsigned char>::value ||
is_same<T, signed short>::value || is_same<T, unsigned short>::value ||
is_same<T, signed int>::value || is_same<T, unsigned int>::value ||
is_same<T, signed long>::value || is_same<T, unsigned long>::value ||
#if ARDUINOJSON_HAS_LONG_LONG
is_same<T, signed long long>::value ||
is_same<T, unsigned long long>::value ||
#endif
#if ARDUINOJSON_HAS_INT64
is_same<T, signed __int64>::value ||
is_same<T, unsigned __int64>::value ||
#endif
is_same<T, char>::value;
};
template <typename T>
struct is_integral<const T> : is_integral<T> {};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename>
struct is_signed : false_type {};
template <>
struct is_signed<char> : true_type {};
template <>
struct is_signed<signed char> : true_type {};
template <>
struct is_signed<signed short> : true_type {};
template <>
struct is_signed<signed int> : true_type {};
template <>
struct is_signed<signed long> : true_type {};
template <>
struct is_signed<float> : true_type {};
template <>
struct is_signed<double> : true_type {};
#if ARDUINOJSON_HAS_LONG_LONG
template <>
struct is_signed<signed long long> : true_type {};
#endif
#if ARDUINOJSON_HAS_INT64
template <>
struct is_signed<signed __int64> : true_type {};
#endif
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename>
struct is_unsigned : false_type {};
template <>
struct is_unsigned<bool> : true_type {};
template <>
struct is_unsigned<unsigned char> : true_type {};
template <>
struct is_unsigned<unsigned short> : true_type {};
template <>
struct is_unsigned<unsigned int> : true_type {};
template <>
struct is_unsigned<unsigned long> : true_type {};
#if ARDUINOJSON_HAS_INT64
template <>
struct is_unsigned<unsigned __int64> : true_type {};
#endif
#if ARDUINOJSON_HAS_LONG_LONG
template <>
struct is_unsigned<unsigned long long> : true_type {};
#endif
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
struct type_identity {
typedef T type;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
struct make_unsigned;
template <>
struct make_unsigned<char> : type_identity<unsigned char> {};
template <>
struct make_unsigned<signed char> : type_identity<unsigned char> {};
template <>
struct make_unsigned<unsigned char> : type_identity<unsigned char> {};
template <>
struct make_unsigned<signed short> : type_identity<unsigned short> {};
template <>
struct make_unsigned<unsigned short> : type_identity<unsigned short> {};
template <>
struct make_unsigned<signed int> : type_identity<unsigned int> {};
template <>
struct make_unsigned<unsigned int> : type_identity<unsigned int> {};
template <>
struct make_unsigned<signed long> : type_identity<unsigned long> {};
template <>
struct make_unsigned<unsigned long> : type_identity<unsigned long> {};
#if ARDUINOJSON_HAS_LONG_LONG
template <>
struct make_unsigned<signed long long> : type_identity<unsigned long long> {};
template <>
struct make_unsigned<unsigned long long> : type_identity<unsigned long long> {};
#endif
#if ARDUINOJSON_HAS_INT64
template <>
struct make_unsigned<signed __int64> : type_identity<unsigned __int64> {};
template <>
struct make_unsigned<unsigned __int64> : type_identity<unsigned __int64> {};
#endif
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
struct remove_const {
typedef T type;
};
template <typename T>
struct remove_const<const T> {
typedef T type;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
struct remove_reference {
typedef T type;
};
template <typename T>
struct remove_reference<T&> {
typedef T type;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class MemoryPool;
class VariantData;
class VariantSlot;
class CollectionData {
VariantSlot *_head;
VariantSlot *_tail;
public:
VariantSlot *addSlot(MemoryPool *);
VariantData *add(MemoryPool *pool);
template <typename TAdaptedString>
VariantData *add(TAdaptedString key, MemoryPool *pool);
void clear();
template <typename TAdaptedString>
bool containsKey(const TAdaptedString &key) const;
bool copyFrom(const CollectionData &src, MemoryPool *pool);
bool equalsArray(const CollectionData &other) const;
bool equalsObject(const CollectionData &other) const;
VariantData *get(size_t index) const;
template <typename TAdaptedString>
VariantData *get(TAdaptedString key) const;
VariantSlot *head() const {
return _head;
}
void remove(size_t index);
template <typename TAdaptedString>
void remove(TAdaptedString key) {
remove(getSlot(key));
}
void remove(VariantSlot *slot);
size_t memoryUsage() const;
size_t nesting() const;
size_t size() const;
private:
VariantSlot *getSlot(size_t index) const;
template <typename TAdaptedString>
VariantSlot *getSlot(TAdaptedString key) const;
VariantSlot *getPreviousSlot(VariantSlot *) const;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
#if ARDUINOJSON_USE_DOUBLE
typedef double Float;
#else
typedef float Float;
#endif
} // namespace ARDUINOJSON_NAMESPACE
#include <stdint.h> // int64_t
namespace ARDUINOJSON_NAMESPACE {
#if ARDUINOJSON_USE_LONG_LONG
typedef int64_t Integer;
typedef uint64_t UInt;
#else
typedef long Integer;
typedef unsigned long UInt;
#endif
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
enum {
VALUE_MASK = 0x7F,
VALUE_IS_NULL = 0,
VALUE_IS_LINKED_RAW = 0x01,
VALUE_IS_OWNED_RAW = 0x02,
VALUE_IS_LINKED_STRING = 0x03,
VALUE_IS_OWNED_STRING = 0x04,
VALUE_IS_BOOLEAN = 0x05,
VALUE_IS_POSITIVE_INTEGER = 0x06,
VALUE_IS_NEGATIVE_INTEGER = 0x07,
VALUE_IS_FLOAT = 0x08,
COLLECTION_MASK = 0x60,
VALUE_IS_OBJECT = 0x20,
VALUE_IS_ARRAY = 0x40,
KEY_IS_OWNED = 0x80
};
struct RawData {
const char *data;
size_t size;
};
union VariantContent {
Float asFloat;
UInt asInteger;
CollectionData asCollection;
const char *asString;
struct {
const char *data;
size_t size;
} asRaw;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
typedef conditional<sizeof(void*) <= 2, int8_t, int16_t>::type VariantSlotDiff;
class VariantSlot {
VariantContent _content;
uint8_t _flags;
VariantSlotDiff _next;
const char* _key;
public:
VariantData* data() {
return reinterpret_cast<VariantData*>(&_content);
}
const VariantData* data() const {
return reinterpret_cast<const VariantData*>(&_content);
}
VariantSlot* next() {
return _next ? this + _next : 0;
}
const VariantSlot* next() const {
return const_cast<VariantSlot*>(this)->next();
}
VariantSlot* next(size_t distance) {
VariantSlot* slot = this;
while (distance--) {
if (!slot->_next) return 0;
slot += slot->_next;
}
return slot;
}
const VariantSlot* next(size_t distance) const {
return const_cast<VariantSlot*>(this)->next(distance);
}
void setNext(VariantSlot* slot) {
_next = VariantSlotDiff(slot ? slot - this : 0);
}
void setNextNotNull(VariantSlot* slot) {
ARDUINOJSON_ASSERT(slot != 0);
_next = VariantSlotDiff(slot - this);
}
void setOwnedKey(not_null<const char*> k) {
_flags |= KEY_IS_OWNED;
_key = k.get();
}
void setLinkedKey(not_null<const char*> k) {
_flags &= VALUE_MASK;
_key = k.get();
}
const char* key() const {
return _key;
}
bool ownsKey() const {
return (_flags & KEY_IS_OWNED) != 0;
}
void clear() {
_next = 0;
_flags = 0;
_key = 0;
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
inline bool isAligned(void *ptr) {
const size_t mask = sizeof(void *) - 1;
size_t addr = reinterpret_cast<size_t>(ptr);
return (addr & mask) == 0;
}
inline size_t addPadding(size_t bytes) {
const size_t mask = sizeof(void *) - 1;
return (bytes + mask) & ~mask;
}
template <size_t bytes>
struct AddPadding {
static const size_t mask = sizeof(void *) - 1;
static const size_t value = (bytes + mask) & ~mask;
};
} // namespace ARDUINOJSON_NAMESPACE
#define JSON_STRING_SIZE(SIZE) (SIZE)
namespace ARDUINOJSON_NAMESPACE {
struct StringSlot {
char *value;
size_t size;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class MemoryPool {
public:
MemoryPool(char* buf, size_t capa)
: _begin(buf),
_left(buf),
_right(buf ? buf + capa : 0),
_end(buf ? buf + capa : 0) {
ARDUINOJSON_ASSERT(isAligned(_begin));
ARDUINOJSON_ASSERT(isAligned(_right));
ARDUINOJSON_ASSERT(isAligned(_end));
}
void* buffer() {
return _begin;
}
size_t capacity() const {
return size_t(_end - _begin);
}
size_t size() const {
return size_t(_left - _begin + _end - _right);
}
VariantSlot* allocVariant() {
return allocRight<VariantSlot>();
}
char* allocFrozenString(size_t n) {
if (!canAlloc(n)) return 0;
char* s = _left;
_left += n;
checkInvariants();
return s;
}
StringSlot allocExpandableString() {
StringSlot s;
s.value = _left;
s.size = size_t(_right - _left);
_left = _right;
checkInvariants();
return s;
}
void freezeString(StringSlot& s, size_t newSize) {
_left -= (s.size - newSize);
s.size = newSize;
checkInvariants();
}
void clear() {
_left = _begin;
_right = _end;
}
bool canAlloc(size_t bytes) const {
return _left + bytes <= _right;
}
bool owns(void* p) const {
return _begin <= p && p < _end;
}
template <typename T>
T* allocRight() {
return reinterpret_cast<T*>(allocRight(sizeof(T)));
}
void* allocRight(size_t bytes) {
if (!canAlloc(bytes)) return 0;
_right -= bytes;
return _right;
}
void* operator new(size_t, void* p) {
return p;
}
private:
StringSlot* allocStringSlot() {
return allocRight<StringSlot>();
}
void checkInvariants() {
ARDUINOJSON_ASSERT(_begin <= _left);
ARDUINOJSON_ASSERT(_left <= _right);
ARDUINOJSON_ASSERT(_right <= _end);
ARDUINOJSON_ASSERT(isAligned(_right));
}
char *_begin, *_left, *_right, *_end;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename>
struct IsString : false_type {};
template <typename T>
struct IsString<const T> : IsString<T> {};
template <typename T>
struct IsString<T&> : IsString<T> {};
} // namespace ARDUINOJSON_NAMESPACE
#include <string.h> // strcmp
namespace ARDUINOJSON_NAMESPACE {
inline int8_t safe_strcmp(const char* a, const char* b) {
if (a == b) return 0;
if (!a) return -1;
if (!b) return 1;
return static_cast<int8_t>(strcmp(a, b));
}
inline int8_t safe_strncmp(const char* a, const char* b, size_t n) {
if (a == b) return 0;
if (!a) return -1;
if (!b) return 1;
return static_cast<int8_t>(strncmp(a, b, n));
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class ConstRamStringAdapter {
public:
ConstRamStringAdapter(const char* str = 0) : _str(str) {}
int8_t compare(const char* other) const {
return safe_strcmp(_str, other);
}
bool equals(const char* expected) const {
return compare(expected) == 0;
}
bool isNull() const {
return !_str;
}
template <typename TMemoryPool>
char* save(TMemoryPool*) const {
return 0;
}
size_t size() const {
if (!_str) return 0;
return strlen(_str);
}
const char* data() const {
return _str;
}
bool isStatic() const {
return true;
}
protected:
const char* _str;
};
inline ConstRamStringAdapter adaptString(const char* str) {
return ConstRamStringAdapter(str);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class RamStringAdapter : public ConstRamStringAdapter {
public:
RamStringAdapter(const char* str) : ConstRamStringAdapter(str) {}
char* save(MemoryPool* pool) const {
if (!_str) return NULL;
size_t n = size() + 1;
char* dup = pool->allocFrozenString(n);
if (dup) memcpy(dup, _str, n);
return dup;
}
bool isStatic() const {
return false;
}
};
template <typename TChar>
inline RamStringAdapter adaptString(const TChar* str) {
return RamStringAdapter(reinterpret_cast<const char*>(str));
}
inline RamStringAdapter adaptString(char* str) {
return RamStringAdapter(str);
}
template <typename TChar>
struct IsString<TChar*> {
static const bool value = sizeof(TChar) == 1;
};
template <>
struct IsString<void*> {
static const bool value = false;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class SizedRamStringAdapter {
public:
SizedRamStringAdapter(const char* str, size_t n) : _str(str), _size(n) {}
int8_t compare(const char* other) const {
return safe_strncmp(_str, other, _size) == 0;
}
bool equals(const char* expected) const {
return compare(expected) == 0;
}
bool isNull() const {
return !_str;
}
char* save(MemoryPool* pool) const {
if (!_str) return NULL;
char* dup = pool->allocFrozenString(_size);
if (dup) memcpy(dup, _str, _size);
return dup;
}
size_t size() const {
return _size;
}
bool isStatic() const {
return false;
}
private:
const char* _str;
size_t _size;
};
template <typename TChar>
inline SizedRamStringAdapter adaptString(const TChar* str, size_t size) {
return SizedRamStringAdapter(reinterpret_cast<const char*>(str), size);
}
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_STD_STRING
#include <string>
namespace ARDUINOJSON_NAMESPACE {
class StlStringAdapter {
public:
StlStringAdapter(const std::string& str) : _str(&str) {}
char* save(MemoryPool* pool) const {
size_t n = _str->length() + 1;
char* dup = pool->allocFrozenString(n);
if (dup) memcpy(dup, _str->c_str(), n);
return dup;
}
bool isNull() const {
return false;
}
int8_t compare(const char* other) const {
if (!other) return 1;
return static_cast<int8_t>(_str->compare(other));
}
bool equals(const char* expected) const {
if (!expected) return false;
return *_str == expected;
}
const char* data() const {
return _str->data();
}
size_t size() const {
return _str->size();
}
bool isStatic() const {
return false;
}
private:
const std::string* _str;
};
template <>
struct IsString<std::string> : true_type {};
inline StlStringAdapter adaptString(const std::string& str) {
return StlStringAdapter(str);
}
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_ARDUINO_STRING
#include <WString.h>
namespace ARDUINOJSON_NAMESPACE {
class ArduinoStringAdapter {
public:
ArduinoStringAdapter(const ::String& str) : _str(&str) {}
char* save(MemoryPool* pool) const {
if (isNull()) return NULL;
size_t n = _str->length() + 1;
char* dup = pool->allocFrozenString(n);
if (dup) memcpy(dup, _str->c_str(), n);
return dup;
}
bool isNull() const {
return !_str->c_str();
}
int8_t compare(const char* other) const {
const char* me = _str->c_str();
return safe_strcmp(me, other);
}
bool equals(const char* expected) const {
return compare(expected) == 0;
}
const char* data() const {
return _str->c_str();
}
size_t size() const {
return _str->length();
}
bool isStatic() const {
return false;
}
private:
const ::String* _str;
};
template <>
struct IsString< ::String> : true_type {};
template <>
struct IsString< ::StringSumHelper> : true_type {};
inline ArduinoStringAdapter adaptString(const ::String& str) {
return ArduinoStringAdapter(str);
}
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_PROGMEM
namespace ARDUINOJSON_NAMESPACE {
class FlashStringAdapter {
public:
FlashStringAdapter(const __FlashStringHelper* str) : _str(str) {}
int8_t compare(const char* other) const {
if (!other && !_str) return 0;
if (!_str) return -1;
if (!other) return 1;
return -strcmp_P(other, reinterpret_cast<const char*>(_str));
}
bool equals(const char* expected) const {
return compare(expected) == 0;
}
bool isNull() const {
return !_str;
}
char* save(MemoryPool* pool) const {
if (!_str) return NULL;
size_t n = size() + 1; // copy the terminator
char* dup = pool->allocFrozenString(n);
if (dup) memcpy_P(dup, reinterpret_cast<const char*>(_str), n);
return dup;
}
const char* data() const {
return 0;
}
size_t size() const {
if (!_str) return 0;
return strlen_P(reinterpret_cast<const char*>(_str));
}
bool isStatic() const {
return false;
}
private:
const __FlashStringHelper* _str;
};
inline FlashStringAdapter adaptString(const __FlashStringHelper* str) {
return FlashStringAdapter(str);
}
template <>
struct IsString<const __FlashStringHelper*> : true_type {};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class SizedFlashStringAdapter {
public:
SizedFlashStringAdapter(const __FlashStringHelper* str, size_t sz)
: _str(str), _size(sz) {}
int8_t compare(const char* other) const {
if (!other && !_str) return 0;
if (!_str) return -1;
if (!other) return 1;
return -strncmp_P(other, reinterpret_cast<const char*>(_str), _size);
}
bool equals(const char* expected) const {
return compare(expected) == 0;
}
bool isNull() const {
return !_str;
}
char* save(MemoryPool* pool) const {
if (!_str) return NULL;
char* dup = pool->allocFrozenString(_size);
if (dup) memcpy_P(dup, (const char*)_str, _size);
return dup;
}
size_t size() const {
return _size;
}
bool isStatic() const {
return false;
}
private:
const __FlashStringHelper* _str;
size_t _size;
};
inline SizedFlashStringAdapter adaptString(const __FlashStringHelper* str,
size_t sz) {
return SizedFlashStringAdapter(str, sz);
}
} // namespace ARDUINOJSON_NAMESPACE
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
class SerializedValue {
public:
explicit SerializedValue(T str) : _str(str) {}
operator T() const {
return _str;
}
const char* data() const {
return _str.c_str();
}
size_t size() const {
return _str.length();
}
private:
T _str;
};
template <typename TChar>
class SerializedValue<TChar*> {
public:
explicit SerializedValue(TChar* p, size_t n) : _data(p), _size(n) {}
operator TChar*() const {
return _data;
}
TChar* data() const {
return _data;
}
size_t size() const {
return _size;
}
private:
TChar* _data;
size_t _size;
};
template <typename T>
inline SerializedValue<T> serialized(T str) {
return SerializedValue<T>(str);
}
template <typename TChar>
inline SerializedValue<TChar*> serialized(TChar* p) {
return SerializedValue<TChar*>(p, adaptString(p).size());
}
template <typename TChar>
inline SerializedValue<TChar*> serialized(TChar* p, size_t n) {
return SerializedValue<TChar*>(p, n);
}
} // namespace ARDUINOJSON_NAMESPACE
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#elif defined(__GNUC__)
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic push
#endif
#pragma GCC diagnostic ignored "-Wconversion"
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4310)
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename T, typename Enable = void>
struct numeric_limits;
template <typename T>
struct numeric_limits<T, typename enable_if<is_unsigned<T>::value>::type> {
static T lowest() {
return 0;
}
static T highest() {
return T(-1);
}
};
template <typename T>
struct numeric_limits<
T, typename enable_if<is_integral<T>::value && is_signed<T>::value>::type> {
static T lowest() {
return T(T(1) << (sizeof(T) * 8 - 1));
}
static T highest() {
return T(~lowest());
}
};
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include <stdlib.h> // for size_t
namespace ARDUINOJSON_NAMESPACE {
#ifndef isnan
template <typename T>
bool isnan(T x) {
return x != x;
}
#endif
#ifndef isinf
template <typename T>
bool isinf(T x) {
return x != 0.0 && x * 2 == x;
}
#endif
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T, typename F>
struct alias_cast_t {
union {
F raw;
T data;
};
};
template <typename T, typename F>
T alias_cast(F raw_data) {
alias_cast_t<T, F> ac;
ac.raw = raw_data;
return ac.data;
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T, size_t = sizeof(T)>
struct FloatTraits {};
template <typename T>
struct FloatTraits<T, 8 /*64bits*/> {
typedef uint64_t mantissa_type;
static const short mantissa_bits = 52;
static const mantissa_type mantissa_max =
(mantissa_type(1) << mantissa_bits) - 1;
typedef int16_t exponent_type;
static const exponent_type exponent_max = 308;
template <typename TExponent>
static T make_float(T m, TExponent e) {
if (e > 0) {
for (uint8_t index = 0; e != 0; index++) {
if (e & 1) m *= positiveBinaryPowerOfTen(index);
e >>= 1;
}
} else {
e = TExponent(-e);
for (uint8_t index = 0; e != 0; index++) {
if (e & 1) m *= negativeBinaryPowerOfTen(index);
e >>= 1;
}
}
return m;
}
static T positiveBinaryPowerOfTen(int index) {
static T factors[] = {
1e1,
1e2,
1e4,
1e8,
1e16,
forge(0x4693B8B5, 0xB5056E17), // 1e32
forge(0x4D384F03, 0xE93FF9F5), // 1e64
forge(0x5A827748, 0xF9301D32), // 1e128
forge(0x75154FDD, 0x7F73BF3C) // 1e256
};
return factors[index];
}
static T negativeBinaryPowerOfTen(int index) {
static T factors[] = {
forge(0x3FB99999, 0x9999999A), // 1e-1
forge(0x3F847AE1, 0x47AE147B), // 1e-2
forge(0x3F1A36E2, 0xEB1C432D), // 1e-4
forge(0x3E45798E, 0xE2308C3A), // 1e-8
forge(0x3C9CD2B2, 0x97D889BC), // 1e-16
forge(0x3949F623, 0xD5A8A733), // 1e-32
forge(0x32A50FFD, 0x44F4A73D), // 1e-64
forge(0x255BBA08, 0xCF8C979D), // 1e-128
forge(0x0AC80628, 0x64AC6F43) // 1e-256
};
return factors[index];
}
static T negativeBinaryPowerOfTenPlusOne(int index) {
static T factors[] = {
1e0,
forge(0x3FB99999, 0x9999999A), // 1e-1
forge(0x3F50624D, 0xD2F1A9FC), // 1e-3
forge(0x3E7AD7F2, 0x9ABCAF48), // 1e-7
forge(0x3CD203AF, 0x9EE75616), // 1e-15
forge(0x398039D6, 0x65896880), // 1e-31
forge(0x32DA53FC, 0x9631D10D), // 1e-63
forge(0x25915445, 0x81B7DEC2), // 1e-127
forge(0x0AFE07B2, 0x7DD78B14) // 1e-255
};
return factors[index];
}
static T nan() {
return forge(0x7ff80000, 0x00000000);
}
static T inf() {
return forge(0x7ff00000, 0x00000000);
}
static T highest() {
return forge(0x7FEFFFFF, 0xFFFFFFFF);
}
static T lowest() {
return forge(0xFFEFFFFF, 0xFFFFFFFF);
}
static T forge(uint32_t msb, uint32_t lsb) {
return alias_cast<T>((uint64_t(msb) << 32) | lsb);
}
};
template <typename T>
struct FloatTraits<T, 4 /*32bits*/> {
typedef uint32_t mantissa_type;
static const short mantissa_bits = 23;
static const mantissa_type mantissa_max =
(mantissa_type(1) << mantissa_bits) - 1;
typedef int8_t exponent_type;
static const exponent_type exponent_max = 38;
template <typename TExponent>
static T make_float(T m, TExponent e) {
if (e > 0) {
for (uint8_t index = 0; e != 0; index++) {
if (e & 1) m *= positiveBinaryPowerOfTen(index);
e >>= 1;
}
} else {
e = -e;
for (uint8_t index = 0; e != 0; index++) {
if (e & 1) m *= negativeBinaryPowerOfTen(index);
e >>= 1;
}
}
return m;
}
static T positiveBinaryPowerOfTen(int index) {
static T factors[] = {1e1f, 1e2f, 1e4f, 1e8f, 1e16f, 1e32f};
return factors[index];
}
static T negativeBinaryPowerOfTen(int index) {
static T factors[] = {1e-1f, 1e-2f, 1e-4f, 1e-8f, 1e-16f, 1e-32f};
return factors[index];
}
static T negativeBinaryPowerOfTenPlusOne(int index) {
static T factors[] = {1e0f, 1e-1f, 1e-3f, 1e-7f, 1e-15f, 1e-31f};
return factors[index];
}
static T forge(uint32_t bits) {
return alias_cast<T>(bits);
}
static T nan() {
return forge(0x7fc00000);
}
static T inf() {
return forge(0x7f800000);
}
static T highest() {
return forge(0x7f7fffff);
}
static T lowest() {
return forge(0xFf7fffff);
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TOut, typename TIn>
typename enable_if<is_integral<TOut>::value && sizeof(TOut) <= sizeof(TIn),
bool>::type
canStorePositiveInteger(TIn value) {
return value <= TIn(numeric_limits<TOut>::highest());
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TOut>::value && sizeof(TIn) < sizeof(TOut),
bool>::type
canStorePositiveInteger(TIn) {
return true;
}
template <typename TOut, typename TIn>
typename enable_if<is_floating_point<TOut>::value, bool>::type
canStorePositiveInteger(TIn) {
return true;
}
template <typename TOut, typename TIn>
typename enable_if<is_floating_point<TOut>::value, bool>::type
canStoreNegativeInteger(TIn) {
return true;
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TOut>::value && is_signed<TOut>::value &&
sizeof(TOut) <= sizeof(TIn),
bool>::type
canStoreNegativeInteger(TIn value) {
return value <= TIn(numeric_limits<TOut>::highest()) + 1;
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TOut>::value && is_signed<TOut>::value &&
sizeof(TIn) < sizeof(TOut),
bool>::type
canStoreNegativeInteger(TIn) {
return true;
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TOut>::value && is_unsigned<TOut>::value,
bool>::type
canStoreNegativeInteger(TIn) {
return false;
}
template <typename TOut, typename TIn>
TOut convertPositiveInteger(TIn value) {
return canStorePositiveInteger<TOut>(value) ? TOut(value) : 0;
}
template <typename TOut, typename TIn>
TOut convertNegativeInteger(TIn value) {
return canStoreNegativeInteger<TOut>(value) ? TOut(~value + 1) : 0;
}
template <typename TOut, typename TIn>
typename enable_if<is_floating_point<TOut>::value, TOut>::type convertFloat(
TIn value) {
return TOut(value);
}
template <typename TOut, typename TIn>
typename enable_if<!is_floating_point<TOut>::value, TOut>::type convertFloat(
TIn value) {
return value >= numeric_limits<TOut>::lowest() &&
value <= numeric_limits<TOut>::highest()
? TOut(value)
: 0;
}
} // namespace ARDUINOJSON_NAMESPACE
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic pop
#endif
#endif
namespace ARDUINOJSON_NAMESPACE {
class VariantData {
VariantContent _content; // must be first to allow cast from array to variant
uint8_t _flags;
public:
template <typename Visitor>
void accept(Visitor &visitor) const {
switch (type()) {
case VALUE_IS_FLOAT:
return visitor.visitFloat(_content.asFloat);
case VALUE_IS_ARRAY:
return visitor.visitArray(_content.asCollection);
case VALUE_IS_OBJECT:
return visitor.visitObject(_content.asCollection);
case VALUE_IS_LINKED_STRING:
case VALUE_IS_OWNED_STRING:
return visitor.visitString(_content.asString);
case VALUE_IS_OWNED_RAW:
case VALUE_IS_LINKED_RAW:
return visitor.visitRawJson(_content.asRaw.data, _content.asRaw.size);
case VALUE_IS_NEGATIVE_INTEGER:
return visitor.visitNegativeInteger(_content.asInteger);
case VALUE_IS_POSITIVE_INTEGER:
return visitor.visitPositiveInteger(_content.asInteger);
case VALUE_IS_BOOLEAN:
return visitor.visitBoolean(_content.asInteger != 0);
default:
return visitor.visitNull();
}
}
template <typename T>
T asIntegral() const;
template <typename T>
T asFloat() const;
const char *asString() const;
bool asBoolean() const;
CollectionData *asArray() {
return isArray() ? &_content.asCollection : 0;
}
const CollectionData *asArray() const {
return const_cast<VariantData *>(this)->asArray();
}
CollectionData *asObject() {
return isObject() ? &_content.asCollection : 0;
}
const CollectionData *asObject() const {
return const_cast<VariantData *>(this)->asObject();
}
bool copyFrom(const VariantData &src, MemoryPool *pool) {
switch (src.type()) {
case VALUE_IS_ARRAY:
return toArray().copyFrom(src._content.asCollection, pool);
case VALUE_IS_OBJECT:
return toObject().copyFrom(src._content.asCollection, pool);
case VALUE_IS_OWNED_STRING:
return setOwnedString(RamStringAdapter(src._content.asString), pool);
case VALUE_IS_OWNED_RAW:
return setOwnedRaw(
serialized(src._content.asRaw.data, src._content.asRaw.size), pool);
default:
setType(src.type());
_content = src._content;
return true;
}
}
bool equals(const VariantData &other) const {
if (type() != other.type()) return false;
switch (type()) {
case VALUE_IS_LINKED_STRING:
case VALUE_IS_OWNED_STRING:
return !strcmp(_content.asString, other._content.asString);
case VALUE_IS_LINKED_RAW:
case VALUE_IS_OWNED_RAW:
return _content.asRaw.size == other._content.asRaw.size &&
!memcmp(_content.asRaw.data, other._content.asRaw.data,
_content.asRaw.size);
case VALUE_IS_BOOLEAN:
case VALUE_IS_POSITIVE_INTEGER:
case VALUE_IS_NEGATIVE_INTEGER:
return _content.asInteger == other._content.asInteger;
case VALUE_IS_ARRAY:
return _content.asCollection.equalsArray(other._content.asCollection);
case VALUE_IS_OBJECT:
return _content.asCollection.equalsObject(other._content.asCollection);
case VALUE_IS_FLOAT:
return _content.asFloat == other._content.asFloat;
case VALUE_IS_NULL:
default:
return true;
}
}
bool isArray() const {
return (_flags & VALUE_IS_ARRAY) != 0;
}
bool isBoolean() const {
return type() == VALUE_IS_BOOLEAN;
}
bool isCollection() const {
return (_flags & COLLECTION_MASK) != 0;
}
template <typename T>
bool isInteger() const {
switch (type()) {
case VALUE_IS_POSITIVE_INTEGER:
return canStorePositiveInteger<T>(_content.asInteger);
case VALUE_IS_NEGATIVE_INTEGER:
return canStoreNegativeInteger<T>(_content.asInteger);
default:
return false;
}
}
bool isFloat() const {
return type() == VALUE_IS_FLOAT || type() == VALUE_IS_POSITIVE_INTEGER ||
type() == VALUE_IS_NEGATIVE_INTEGER;
}
bool isString() const {
return type() == VALUE_IS_LINKED_STRING || type() == VALUE_IS_OWNED_STRING;
}
bool isObject() const {
return (_flags & VALUE_IS_OBJECT) != 0;
}
bool isNull() const {
return type() == VALUE_IS_NULL;
}
bool isEnclosed() const {
return isCollection() || isString();
}
void remove(size_t index) {
if (isArray()) _content.asCollection.remove(index);
}
template <typename TAdaptedString>
void remove(TAdaptedString key) {
if (isObject()) _content.asCollection.remove(key);
}
void setBoolean(bool value) {
setType(VALUE_IS_BOOLEAN);
_content.asInteger = static_cast<UInt>(value);
}
void setFloat(Float value) {
setType(VALUE_IS_FLOAT);
_content.asFloat = value;
}
void setLinkedRaw(SerializedValue<const char *> value) {
if (value.data()) {
setType(VALUE_IS_LINKED_RAW);
_content.asRaw.data = value.data();
_content.asRaw.size = value.size();
} else {
setType(VALUE_IS_NULL);
}
}
template <typename T>
bool setOwnedRaw(SerializedValue<T> value, MemoryPool *pool) {
char *dup = adaptString(value.data(), value.size()).save(pool);
if (dup) {
setType(VALUE_IS_OWNED_RAW);
_content.asRaw.data = dup;
_content.asRaw.size = value.size();
return true;
} else {
setType(VALUE_IS_NULL);
return false;
}
}
template <typename T>
typename enable_if<is_unsigned<T>::value>::type setInteger(T value) {
setUnsignedInteger(value);
}
template <typename T>
typename enable_if<is_signed<T>::value>::type setInteger(T value) {
setSignedInteger(value);
}
template <typename T>
void setSignedInteger(T value) {
if (value >= 0) {
setPositiveInteger(static_cast<UInt>(value));
} else {
setNegativeInteger(~static_cast<UInt>(value) + 1);
}
}
void setPositiveInteger(UInt value) {
setType(VALUE_IS_POSITIVE_INTEGER);
_content.asInteger = value;
}
void setNegativeInteger(UInt value) {
setType(VALUE_IS_NEGATIVE_INTEGER);
_content.asInteger = value;
}
void setLinkedString(const char *value) {
if (value) {
setType(VALUE_IS_LINKED_STRING);
_content.asString = value;
} else {
setType(VALUE_IS_NULL);
}
}
void setNull() {
setType(VALUE_IS_NULL);
}
void setOwnedString(not_null<const char *> s) {
setType(VALUE_IS_OWNED_STRING);
_content.asString = s.get();
}
bool setOwnedString(const char *s) {
if (s) {
setOwnedString(make_not_null(s));
return true;
} else {
setType(VALUE_IS_NULL);
return false;
}
}
template <typename T>
bool setOwnedString(T value, MemoryPool *pool) {
return setOwnedString(value.save(pool));
}
void setUnsignedInteger(UInt value) {
setType(VALUE_IS_POSITIVE_INTEGER);
_content.asInteger = static_cast<UInt>(value);
}
CollectionData &toArray() {
setType(VALUE_IS_ARRAY);
_content.asCollection.clear();
return _content.asCollection;
}
CollectionData &toObject() {
setType(VALUE_IS_OBJECT);
_content.asCollection.clear();
return _content.asCollection;
}
size_t memoryUsage() const {
switch (type()) {
case VALUE_IS_OWNED_STRING:
return strlen(_content.asString) + 1;
case VALUE_IS_OWNED_RAW:
return _content.asRaw.size;
case VALUE_IS_OBJECT:
case VALUE_IS_ARRAY:
return _content.asCollection.memoryUsage();
default:
return 0;
}
}
size_t nesting() const {
return isCollection() ? _content.asCollection.nesting() : 0;
}
size_t size() const {
return isCollection() ? _content.asCollection.size() : 0;
}
VariantData *addElement(MemoryPool *pool) {
if (isNull()) toArray();
if (!isArray()) return 0;
return _content.asCollection.add(pool);
}
VariantData *getElement(size_t index) const {
return isArray() ? _content.asCollection.get(index) : 0;
}
template <typename TAdaptedString>
VariantData *getMember(TAdaptedString key) const {
return isObject() ? _content.asCollection.get(key) : 0;
}
template <typename TAdaptedString>
VariantData *getOrAddMember(TAdaptedString key, MemoryPool *pool) {
if (isNull()) toObject();
if (!isObject()) return 0;
VariantData *var = _content.asCollection.get(key);
if (var) return var;
return _content.asCollection.add(key, pool);
}
private:
uint8_t type() const {
return _flags & VALUE_MASK;
}
void setType(uint8_t t) {
_flags &= KEY_IS_OWNED;
_flags |= t;
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
inline VariantData *arrayAdd(CollectionData *arr, MemoryPool *pool) {
return arr ? arr->add(pool) : 0;
}
template <typename Visitor>
inline void arrayAccept(const CollectionData *arr, Visitor &visitor) {
if (arr)
visitor.visitArray(*arr);
else
visitor.visitNull();
}
inline bool arrayEquals(const CollectionData *lhs, const CollectionData *rhs) {
if (lhs == rhs) return true;
if (!lhs || !rhs) return false;
return lhs->equalsArray(*rhs);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TAdaptedString>
inline bool slotSetKey(VariantSlot* var, TAdaptedString key, MemoryPool* pool) {
if (!var) return false;
if (key.isStatic()) {
var->setLinkedKey(make_not_null(key.data()));
} else {
const char* dup = key.save(pool);
if (!dup) return false;
var->setOwnedKey(make_not_null(dup));
}
return true;
}
inline size_t slotSize(const VariantSlot* var) {
size_t n = 0;
while (var) {
n++;
var = var->next();
}
return n;
}
inline VariantData* slotData(VariantSlot* slot) {
return reinterpret_cast<VariantData*>(slot);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
struct Visitable {
};
template <typename T>
struct IsVisitable : is_base_of<Visitable, T> {};
template <typename T>
struct IsVisitable<T&> : IsVisitable<T> {};
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER // Visual Studio
#define FORCE_INLINE // __forceinline causes C4714 when returning std::string
#define NO_INLINE __declspec(noinline)
#define DEPRECATED(msg) __declspec(deprecated(msg))
#elif defined(__GNUC__) // GCC or Clang
#define FORCE_INLINE __attribute__((always_inline))
#define NO_INLINE __attribute__((noinline))
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
#define DEPRECATED(msg) __attribute__((deprecated(msg)))
#else
#define DEPRECATED(msg) __attribute__((deprecated))
#endif
#else // Other compilers
#define FORCE_INLINE
#define NO_INLINE
#define DEPRECATED(msg)
#endif
#if __cplusplus >= 201103L
#define NOEXCEPT noexcept
#else
#define NOEXCEPT throw()
#endif
#if defined(__has_attribute)
#if __has_attribute(no_sanitize)
#define ARDUINOJSON_NO_SANITIZE(check) __attribute__((no_sanitize(check)))
#else
#define ARDUINOJSON_NO_SANITIZE(check)
#endif
#else
#define ARDUINOJSON_NO_SANITIZE(check)
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename TImpl>
class VariantCasts {
public:
template <typename T>
FORCE_INLINE operator T() const {
return impl()->template as<T>();
}
private:
const TImpl *impl() const {
return static_cast<const TImpl *>(this);
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T, typename Enable = void>
struct Comparer;
template <typename T>
struct Comparer<T, typename enable_if<IsString<T>::value>::type> {
T rhs;
int result;
explicit Comparer(T value) : rhs(value), result(1) {}
void visitArray(const CollectionData &) {}
void visitObject(const CollectionData &) {}
void visitFloat(Float) {}
void visitString(const char *lhs) {
result = -adaptString(rhs).compare(lhs);
}
void visitRawJson(const char *, size_t) {}
void visitNegativeInteger(UInt) {}
void visitPositiveInteger(UInt) {}
void visitBoolean(bool) {}
void visitNull() {
result = adaptString(rhs).compare(NULL);
}
};
template <typename T>
typename enable_if<is_signed<T>::value, int>::type sign(const T &value) {
return value < 0 ? -1 : value > 0 ? 1 : 0;
}
template <typename T>
typename enable_if<is_unsigned<T>::value, int>::type sign(const T &value) {
return value > 0 ? 1 : 0;
}
template <typename T>
struct Comparer<T, typename enable_if<is_integral<T>::value ||
is_floating_point<T>::value>::type> {
T rhs;
int result;
explicit Comparer(T value) : rhs(value), result(1) {}
void visitArray(const CollectionData &) {}
void visitObject(const CollectionData &) {}
void visitFloat(Float lhs) {
result = sign(lhs - static_cast<Float>(rhs));
}
void visitString(const char *) {}
void visitRawJson(const char *, size_t) {}
void visitNegativeInteger(UInt lhs) {
result = -sign(static_cast<T>(lhs) + rhs);
}
void visitPositiveInteger(UInt lhs) {
result = static_cast<T>(lhs) < rhs ? -1 : static_cast<T>(lhs) > rhs ? 1 : 0;
}
void visitBoolean(bool) {}
void visitNull() {}
};
template <>
struct Comparer<bool, void> {
bool rhs;
int result;
explicit Comparer(bool value) : rhs(value), result(1) {}
void visitArray(const CollectionData &) {}
void visitObject(const CollectionData &) {}
void visitFloat(Float) {}
void visitString(const char *) {}
void visitRawJson(const char *, size_t) {}
void visitNegativeInteger(UInt) {}
void visitPositiveInteger(UInt) {}
void visitBoolean(bool lhs) {
result = static_cast<int>(lhs - rhs);
}
void visitNull() {}
};
#if ARDUINOJSON_HAS_NULLPTR
template <>
struct Comparer<decltype(nullptr), void> {
int result;
explicit Comparer(decltype(nullptr)) : result(1) {}
void visitArray(const CollectionData &) {}
void visitObject(const CollectionData &) {}
void visitFloat(Float) {}
void visitString(const char *) {}
void visitRawJson(const char *, size_t) {}
void visitNegativeInteger(UInt) {}
void visitPositiveInteger(UInt) {}
void visitBoolean(bool) {}
void visitNull() {
result = 0;
}
};
#endif
template <typename TVariant>
class VariantComparisons {
private:
template <typename T>
static int compare(TVariant lhs, const T &rhs) {
Comparer<T> comparer(rhs);
lhs.accept(comparer);
return comparer.result;
}
public:
template <typename T>
friend bool operator==(T *lhs, TVariant rhs) {
return compare(rhs, lhs) == 0;
}
template <typename T>
friend bool operator==(const T &lhs, TVariant rhs) {
return compare(rhs, lhs) == 0;
}
template <typename T>
friend bool operator==(TVariant lhs, T *rhs) {
return compare(lhs, rhs) == 0;
}
template <typename T>
friend bool operator==(TVariant lhs, const T &rhs) {
return compare(lhs, rhs) == 0;
}
template <typename T>
friend bool operator!=(T *lhs, TVariant rhs) {
return compare(rhs, lhs) != 0;
}
template <typename T>
friend bool operator!=(const T &lhs, TVariant rhs) {
return compare(rhs, lhs) != 0;
}
template <typename T>
friend bool operator!=(TVariant lhs, T *rhs) {
return compare(lhs, rhs) != 0;
}
template <typename T>
friend bool operator!=(TVariant lhs, const T &rhs) {
return compare(lhs, rhs) != 0;
}
template <typename T>
friend bool operator<(T *lhs, TVariant rhs) {
return compare(rhs, lhs) > 0;
}
template <typename T>
friend bool operator<(const T &lhs, TVariant rhs) {
return compare(rhs, lhs) > 0;
}
template <typename T>
friend bool operator<(TVariant lhs, T *rhs) {
return compare(lhs, rhs) < 0;
}
template <typename T>
friend bool operator<(TVariant lhs, const T &rhs) {
return compare(lhs, rhs) < 0;
}
template <typename T>
friend bool operator<=(T *lhs, TVariant rhs) {
return compare(rhs, lhs) >= 0;
}
template <typename T>
friend bool operator<=(const T &lhs, TVariant rhs) {
return compare(rhs, lhs) >= 0;
}
template <typename T>
friend bool operator<=(TVariant lhs, T *rhs) {
return compare(lhs, rhs) <= 0;
}
template <typename T>
friend bool operator<=(TVariant lhs, const T &rhs) {
return compare(lhs, rhs) <= 0;
}
template <typename T>
friend bool operator>(T *lhs, TVariant rhs) {
return compare(rhs, lhs) < 0;
}
template <typename T>
friend bool operator>(const T &lhs, TVariant rhs) {
return compare(rhs, lhs) < 0;
}
template <typename T>
friend bool operator>(TVariant lhs, T *rhs) {
return compare(lhs, rhs) > 0;
}
template <typename T>
friend bool operator>(TVariant lhs, const T &rhs) {
return compare(lhs, rhs) > 0;
}
template <typename T>
friend bool operator>=(T *lhs, TVariant rhs) {
return compare(rhs, lhs) <= 0;
}
template <typename T>
friend bool operator>=(const T &lhs, TVariant rhs) {
return compare(rhs, lhs) <= 0;
}
template <typename T>
friend bool operator>=(TVariant lhs, T *rhs) {
return compare(lhs, rhs) >= 0;
}
template <typename T>
friend bool operator>=(TVariant lhs, const T &rhs) {
return compare(lhs, rhs) >= 0;
}
};
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_ARDUINO_STRING
#endif
#if ARDUINOJSON_ENABLE_STD_STRING
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename>
struct IsWriteableString : false_type {};
template <typename TString>
class DynamicStringWriter {};
#if ARDUINOJSON_ENABLE_ARDUINO_STRING
template <>
struct IsWriteableString<String> : true_type {};
template <>
class DynamicStringWriter<String> {
public:
DynamicStringWriter(String &str) : _str(&str) {}
size_t write(uint8_t c) {
_str->operator+=(static_cast<char>(c));
return 1;
}
size_t write(const uint8_t *s, size_t n) {
_str->reserve(_str->length() + n);
while (n > 0) {
_str->operator+=(static_cast<char>(*s++));
n--;
}
return n;
}
private:
String *_str;
};
#endif
#if ARDUINOJSON_ENABLE_STD_STRING
template <>
struct IsWriteableString<std::string> : true_type {};
template <>
class DynamicStringWriter<std::string> {
public:
DynamicStringWriter(std::string &str) : _str(&str) {}
size_t write(uint8_t c) {
_str->operator+=(static_cast<char>(c));
return 1;
}
size_t write(const uint8_t *s, size_t n) {
_str->append(reinterpret_cast<const char *>(s), n);
return n;
}
private:
std::string *_str;
};
#endif
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class ArrayRef;
class ArrayConstRef;
class ObjectRef;
class ObjectConstRef;
class VariantRef;
class VariantConstRef;
template <typename T>
struct VariantAs {
typedef T type;
};
template <>
struct VariantAs<char*> {
typedef const char* type;
};
template <typename T>
struct VariantConstAs {
typedef typename VariantAs<T>::type type;
};
template <>
struct VariantConstAs<VariantRef> {
typedef VariantConstRef type;
};
template <>
struct VariantConstAs<ObjectRef> {
typedef ObjectConstRef type;
};
template <>
struct VariantConstAs<ArrayRef> {
typedef ArrayConstRef type;
};
template <typename T>
inline typename enable_if<is_integral<T>::value, T>::type variantAs(
const VariantData* _data) {
return _data != 0 ? _data->asIntegral<T>() : T(0);
}
template <typename T>
inline typename enable_if<is_same<T, bool>::value, T>::type variantAs(
const VariantData* _data) {
return _data != 0 ? _data->asBoolean() : false;
}
template <typename T>
inline typename enable_if<is_floating_point<T>::value, T>::type variantAs(
const VariantData* _data) {
return _data != 0 ? _data->asFloat<T>() : T(0);
}
template <typename T>
inline typename enable_if<is_same<T, const char*>::value ||
is_same<T, char*>::value,
const char*>::type
variantAs(const VariantData* _data) {
return _data != 0 ? _data->asString() : 0;
}
template <typename T>
inline typename enable_if<is_same<ArrayConstRef, T>::value, T>::type variantAs(
const VariantData* _data);
template <typename T>
inline typename enable_if<is_same<ObjectConstRef, T>::value, T>::type variantAs(
const VariantData* _data);
template <typename T>
inline typename enable_if<is_same<VariantConstRef, T>::value, T>::type
variantAs(const VariantData* _data);
template <typename T>
inline typename enable_if<IsWriteableString<T>::value, T>::type variantAs(
const VariantData* _data);
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TImpl>
class VariantOr {
public:
template <typename T>
T operator|(const T &defaultValue) const {
if (impl()->template is<T>())
return impl()->template as<T>();
else
return defaultValue;
}
const char *operator|(const char *defaultValue) const {
const char *value = impl()->template as<const char *>();
return value ? value : defaultValue;
}
private:
const TImpl *impl() const {
return static_cast<const TImpl *>(this);
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename>
class ElementProxy;
template <typename TArray>
class ArrayShortcuts {
public:
FORCE_INLINE ElementProxy<const TArray &> operator[](size_t index) const;
FORCE_INLINE ObjectRef createNestedObject() const;
FORCE_INLINE ArrayRef createNestedArray() const;
template <typename T>
FORCE_INLINE bool add(const T &value) const {
return impl()->addElement().set(value);
}
template <typename T>
FORCE_INLINE bool add(T *value) const {
return impl()->addElement().set(value);
}
private:
const TArray *impl() const {
return static_cast<const TArray *>(this);
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TParent, typename TStringRef>
class MemberProxy;
template <typename TObject>
class ObjectShortcuts {
public:
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value, bool>::type
containsKey(const TString &key) const;
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar *>::value, bool>::type
containsKey(TChar *key) const;
template <typename TString>
FORCE_INLINE
typename enable_if<IsString<TString>::value,
MemberProxy<const TObject &, const TString &> >::type
operator[](const TString &key) const;
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar *>::value,
MemberProxy<const TObject &, TChar *> >::type
operator[](TChar *key) const;
template <typename TString>
FORCE_INLINE ArrayRef createNestedArray(const TString &key) const;
template <typename TChar>
FORCE_INLINE ArrayRef createNestedArray(TChar *key) const;
template <typename TString>
ObjectRef createNestedObject(const TString &key) const;
template <typename TChar>
ObjectRef createNestedObject(TChar *key) const;
private:
const TObject *impl() const {
return static_cast<const TObject *>(this);
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TVariant>
class VariantShortcuts : public ObjectShortcuts<TVariant>,
public ArrayShortcuts<TVariant> {
public:
using ArrayShortcuts<TVariant>::createNestedArray;
using ArrayShortcuts<TVariant>::createNestedObject;
using ArrayShortcuts<TVariant>::operator[];
using ObjectShortcuts<TVariant>::createNestedArray;
using ObjectShortcuts<TVariant>::createNestedObject;
using ObjectShortcuts<TVariant>::operator[];
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TImpl>
class VariantOperators : public VariantCasts<TImpl>,
public VariantComparisons<TImpl>,
public VariantOr<TImpl>,
public VariantShortcuts<TImpl> {};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename Visitor>
inline void variantAccept(const VariantData *var, Visitor &visitor) {
if (var != 0)
var->accept(visitor);
else
visitor.visitNull();
}
inline const CollectionData *variantAsArray(const VariantData *var) {
return var != 0 ? var->asArray() : 0;
}
inline const CollectionData *variantAsObject(const VariantData *var) {
return var != 0 ? var->asObject() : 0;
}
inline CollectionData *variantAsObject(VariantData *var) {
return var != 0 ? var->asObject() : 0;
}
inline bool variantCopyFrom(VariantData *dst, const VariantData *src,
MemoryPool *pool) {
if (!dst) return false;
if (!src) {
dst->setNull();
return true;
}
return dst->copyFrom(*src, pool);
}
inline bool variantEquals(const VariantData *a, const VariantData *b) {
if (a == b) return true;
if (!a || !b) return false;
return a->equals(*b);
}
inline bool variantIsArray(const VariantData *var) {
return var && var->isArray();
}
inline bool variantIsBoolean(const VariantData *var) {
return var && var->isBoolean();
}
template <typename T>
inline bool variantIsInteger(const VariantData *var) {
return var && var->isInteger<T>();
}
inline bool variantIsFloat(const VariantData *var) {
return var && var->isFloat();
}
inline bool variantIsString(const VariantData *var) {
return var && var->isString();
}
inline bool variantIsObject(const VariantData *var) {
return var && var->isObject();
}
inline bool variantIsNull(const VariantData *var) {
return var == 0 || var->isNull();
}
inline bool variantSetBoolean(VariantData *var, bool value) {
if (!var) return false;
var->setBoolean(value);
return true;
}
inline bool variantSetFloat(VariantData *var, Float value) {
if (!var) return false;
var->setFloat(value);
return true;
}
inline bool variantSetLinkedRaw(VariantData *var,
SerializedValue<const char *> value) {
if (!var) return false;
var->setLinkedRaw(value);
return true;
}
template <typename T>
inline bool variantSetOwnedRaw(VariantData *var, SerializedValue<T> value,
MemoryPool *pool) {
return var != 0 && var->setOwnedRaw(value, pool);
}
template <typename T>
inline bool variantSetSignedInteger(VariantData *var, T value) {
if (!var) return false;
var->setSignedInteger(value);
return true;
}
inline bool variantSetLinkedString(VariantData *var, const char *value) {
if (!var) return false;
var->setLinkedString(value);
return true;
}
inline void variantSetNull(VariantData *var) {
if (!var) return;
var->setNull();
}
inline bool variantSetOwnedString(VariantData *var, char *value) {
if (!var) return false;
var->setOwnedString(value);
return true;
}
template <typename T>
inline bool variantSetOwnedString(VariantData *var, T value, MemoryPool *pool) {
return var != 0 && var->setOwnedString(value, pool);
}
inline bool variantSetUnsignedInteger(VariantData *var, UInt value) {
if (!var) return false;
var->setUnsignedInteger(value);
return true;
}
inline size_t variantSize(const VariantData *var) {
return var != 0 ? var->size() : 0;
}
inline CollectionData *variantToArray(VariantData *var) {
if (!var) return 0;
return &var->toArray();
}
inline CollectionData *variantToObject(VariantData *var) {
if (!var) return 0;
return &var->toObject();
}
inline NO_INLINE VariantData *variantAdd(VariantData *var, MemoryPool *pool) {
return var != 0 ? var->addElement(pool) : 0;
}
template <typename TChar>
NO_INLINE VariantData *variantGetOrCreate(VariantData *var, TChar *key,
MemoryPool *pool) {
return var != 0 ? var->getOrAddMember(adaptString(key), pool) : 0;
}
template <typename TString>
NO_INLINE VariantData *variantGetOrCreate(VariantData *var, const TString &key,
MemoryPool *pool) {
return var != 0 ? var->getOrAddMember(adaptString(key), pool) : 0;
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class ArrayRef;
class ObjectRef;
template <typename, typename>
class MemberProxy;
template <typename TData>
class VariantRefBase {
public:
template <typename T>
FORCE_INLINE typename enable_if<is_integral<T>::value, bool>::type is()
const {
return variantIsInteger<T>(_data);
}
template <typename T>
FORCE_INLINE typename enable_if<is_floating_point<T>::value, bool>::type is()
const {
return variantIsFloat(_data);
}
template <typename T>
FORCE_INLINE typename enable_if<is_same<T, bool>::value, bool>::type is()
const {
return variantIsBoolean(_data);
}
template <typename T>
FORCE_INLINE typename enable_if<is_same<T, const char *>::value ||
is_same<T, char *>::value ||
IsWriteableString<T>::value,
bool>::type
is() const {
return variantIsString(_data);
}
template <typename T>
FORCE_INLINE typename enable_if<
is_same<typename remove_const<T>::type, ArrayRef>::value, bool>::type
is() const {
return variantIsArray(_data);
}
template <typename T>
FORCE_INLINE typename enable_if<
is_same<typename remove_const<T>::type, ObjectRef>::value, bool>::type
is() const {
return variantIsObject(_data);
}
FORCE_INLINE bool isNull() const {
return variantIsNull(_data);
}
FORCE_INLINE bool isUndefined() const {
return !_data;
}
FORCE_INLINE size_t memoryUsage() const {
return _data ? _data->memoryUsage() : 0;
}
FORCE_INLINE size_t nesting() const {
return _data ? _data->nesting() : 0;
}
size_t size() const {
return variantSize(_data);
}
protected:
VariantRefBase(TData *data) : _data(data) {}
TData *_data;
};
class VariantRef : public VariantRefBase<VariantData>,
public VariantOperators<VariantRef>,
public Visitable {
typedef VariantRefBase<VariantData> base_type;
friend class VariantConstRef;
public:
FORCE_INLINE VariantRef(MemoryPool *pool, VariantData *data)
: base_type(data), _pool(pool) {}
FORCE_INLINE VariantRef() : base_type(0), _pool(0) {}
FORCE_INLINE void clear() const {
return variantSetNull(_data);
}
FORCE_INLINE bool set(bool value) const {
return variantSetBoolean(_data, value);
}
template <typename T>
FORCE_INLINE bool set(
T value,
typename enable_if<is_floating_point<T>::value>::type * = 0) const {
return variantSetFloat(_data, static_cast<Float>(value));
}
template <typename T>
FORCE_INLINE bool set(
T value,
typename enable_if<is_integral<T>::value && is_signed<T>::value>::type * =
0) const {
return variantSetSignedInteger(_data, value);
}
template <typename T>
FORCE_INLINE bool set(
T value, typename enable_if<is_integral<T>::value &&
is_unsigned<T>::value>::type * = 0) const {
return variantSetUnsignedInteger(_data, static_cast<UInt>(value));
}
FORCE_INLINE bool set(SerializedValue<const char *> value) const {
return variantSetLinkedRaw(_data, value);
}
template <typename T>
FORCE_INLINE bool set(
SerializedValue<T> value,
typename enable_if<!is_same<const char *, T>::value>::type * = 0) const {
return variantSetOwnedRaw(_data, value, _pool);
}
template <typename T>
FORCE_INLINE bool set(
const T &value,
typename enable_if<IsString<T>::value>::type * = 0) const {
return variantSetOwnedString(_data, adaptString(value), _pool);
}
template <typename T>
FORCE_INLINE bool set(
T *value, typename enable_if<IsString<T *>::value>::type * = 0) const {
return variantSetOwnedString(_data, adaptString(value), _pool);
}
FORCE_INLINE bool set(const char *value) const {
return variantSetLinkedString(_data, value);
}
template <typename TVariant>
typename enable_if<IsVisitable<TVariant>::value, bool>::type set(
const TVariant &value) const;
template <typename T>
FORCE_INLINE typename enable_if<!is_same<T, ArrayRef>::value &&
!is_same<T, ObjectRef>::value &&
!is_same<T, VariantRef>::value,
typename VariantAs<T>::type>::type
as() const {
return variantAs<T>(_data);
}
template <typename T>
FORCE_INLINE typename enable_if<is_same<T, ArrayRef>::value, T>::type as()
const;
template <typename T>
FORCE_INLINE typename enable_if<is_same<T, ObjectRef>::value, T>::type as()
const;
template <typename T>
FORCE_INLINE typename enable_if<is_same<T, VariantRef>::value, T>::type as()
const {
return *this;
}
template <typename Visitor>
void accept(Visitor &visitor) const {
variantAccept(_data, visitor);
}
FORCE_INLINE bool operator==(VariantRef lhs) const {
return variantEquals(_data, lhs._data);
}
FORCE_INLINE bool operator!=(VariantRef lhs) const {
return !variantEquals(_data, lhs._data);
}
template <typename T>
typename enable_if<is_same<T, ArrayRef>::value, ArrayRef>::type to() const;
template <typename T>
typename enable_if<is_same<T, ObjectRef>::value, ObjectRef>::type to() const;
template <typename T>
typename enable_if<is_same<T, VariantRef>::value, VariantRef>::type to()
const;
VariantRef addElement() const;
FORCE_INLINE VariantRef getElement(size_t) const;
template <typename TChar>
FORCE_INLINE VariantRef getMember(TChar *) const;
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value, VariantRef>::type
getMember(const TString &) const;
template <typename TChar>
FORCE_INLINE VariantRef getOrAddMember(TChar *) const;
template <typename TString>
FORCE_INLINE VariantRef getOrAddMember(const TString &) const;
FORCE_INLINE void remove(size_t index) const {
if (_data) _data->remove(index);
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar *>::value>::type remove(
TChar *key) const {
if (_data) _data->remove(adaptString(key));
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value>::type remove(
const TString &key) const {
if (_data) _data->remove(adaptString(key));
}
private:
MemoryPool *_pool;
}; // namespace ARDUINOJSON_NAMESPACE
class VariantConstRef : public VariantRefBase<const VariantData>,
public VariantOperators<VariantConstRef>,
public Visitable {
typedef VariantRefBase<const VariantData> base_type;
friend class VariantRef;
public:
VariantConstRef() : base_type(0) {}
VariantConstRef(const VariantData *data) : base_type(data) {}
VariantConstRef(VariantRef var) : base_type(var._data) {}
template <typename Visitor>
void accept(Visitor &visitor) const {
variantAccept(_data, visitor);
}
template <typename T>
FORCE_INLINE typename VariantConstAs<T>::type as() const {
return variantAs<typename VariantConstAs<T>::type>(_data);
}
FORCE_INLINE VariantConstRef operator[](size_t index) const;
template <typename TString>
FORCE_INLINE
typename enable_if<IsString<TString>::value, VariantConstRef>::type
operator[](const TString &key) const {
return VariantConstRef(objectGet(variantAsObject(_data), adaptString(key)));
}
template <typename TChar>
FORCE_INLINE
typename enable_if<IsString<TChar *>::value, VariantConstRef>::type
operator[](TChar *key) const {
const CollectionData *obj = variantAsObject(_data);
return VariantConstRef(obj ? obj->get(adaptString(key)) : 0);
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class VariantPtr {
public:
VariantPtr(MemoryPool *pool, VariantData *data) : _variant(pool, data) {}
VariantRef *operator->() {
return &_variant;
}
VariantRef &operator*() {
return _variant;
}
private:
VariantRef _variant;
};
class ArrayIterator {
public:
ArrayIterator() : _slot(0) {}
explicit ArrayIterator(MemoryPool *pool, VariantSlot *slot)
: _pool(pool), _slot(slot) {}
VariantRef operator*() const {
return VariantRef(_pool, _slot->data());
}
VariantPtr operator->() {
return VariantPtr(_pool, _slot->data());
}
bool operator==(const ArrayIterator &other) const {
return _slot == other._slot;
}
bool operator!=(const ArrayIterator &other) const {
return _slot != other._slot;
}
ArrayIterator &operator++() {
_slot = _slot->next();
return *this;
}
ArrayIterator &operator+=(size_t distance) {
_slot = _slot->next(distance);
return *this;
}
VariantSlot *internal() {
return _slot;
}
private:
MemoryPool *_pool;
VariantSlot *_slot;
};
class VariantConstPtr {
public:
VariantConstPtr(const VariantData *data) : _variant(data) {}
VariantConstRef *operator->() {
return &_variant;
}
VariantConstRef &operator*() {
return _variant;
}
private:
VariantConstRef _variant;
};
class ArrayConstRefIterator {
public:
ArrayConstRefIterator() : _slot(0) {}
explicit ArrayConstRefIterator(const VariantSlot *slot) : _slot(slot) {}
VariantConstRef operator*() const {
return VariantConstRef(_slot->data());
}
VariantConstPtr operator->() {
return VariantConstPtr(_slot->data());
}
bool operator==(const ArrayConstRefIterator &other) const {
return _slot == other._slot;
}
bool operator!=(const ArrayConstRefIterator &other) const {
return _slot != other._slot;
}
ArrayConstRefIterator &operator++() {
_slot = _slot->next();
return *this;
}
ArrayConstRefIterator &operator+=(size_t distance) {
_slot = _slot->next(distance);
return *this;
}
const VariantSlot *internal() {
return _slot;
}
private:
const VariantSlot *_slot;
};
} // namespace ARDUINOJSON_NAMESPACE
#define JSON_ARRAY_SIZE(NUMBER_OF_ELEMENTS) \
((NUMBER_OF_ELEMENTS) * sizeof(ARDUINOJSON_NAMESPACE::VariantSlot))
namespace ARDUINOJSON_NAMESPACE {
class ObjectRef;
template <typename>
class ElementProxy;
template <typename TData>
class ArrayRefBase {
public:
operator VariantConstRef() const {
const void* data = _data; // prevent warning cast-align
return VariantConstRef(reinterpret_cast<const VariantData*>(data));
}
template <typename Visitor>
FORCE_INLINE void accept(Visitor& visitor) const {
arrayAccept(_data, visitor);
}
FORCE_INLINE bool isNull() const {
return _data == 0;
}
FORCE_INLINE size_t memoryUsage() const {
return _data ? _data->memoryUsage() : 0;
}
FORCE_INLINE size_t nesting() const {
return _data ? _data->nesting() : 0;
}
FORCE_INLINE size_t size() const {
return _data ? _data->size() : 0;
}
protected:
ArrayRefBase(TData* data) : _data(data) {}
TData* _data;
};
class ArrayConstRef : public ArrayRefBase<const CollectionData>,
public Visitable {
friend class ArrayRef;
typedef ArrayRefBase<const CollectionData> base_type;
public:
typedef ArrayConstRefIterator iterator;
FORCE_INLINE iterator begin() const {
if (!_data) return iterator();
return iterator(_data->head());
}
FORCE_INLINE iterator end() const {
return iterator();
}
FORCE_INLINE ArrayConstRef() : base_type(0) {}
FORCE_INLINE ArrayConstRef(const CollectionData* data) : base_type(data) {}
FORCE_INLINE bool operator==(ArrayConstRef rhs) const {
return arrayEquals(_data, rhs._data);
}
FORCE_INLINE VariantConstRef operator[](size_t index) const {
return getElement(index);
}
FORCE_INLINE VariantConstRef getElement(size_t index) const {
return VariantConstRef(_data ? _data->get(index) : 0);
}
};
class ArrayRef : public ArrayRefBase<CollectionData>,
public ArrayShortcuts<ArrayRef>,
public Visitable {
typedef ArrayRefBase<CollectionData> base_type;
public:
typedef ArrayIterator iterator;
FORCE_INLINE ArrayRef() : base_type(0), _pool(0) {}
FORCE_INLINE ArrayRef(MemoryPool* pool, CollectionData* data)
: base_type(data), _pool(pool) {}
operator VariantRef() {
void* data = _data; // prevent warning cast-align
return VariantRef(_pool, reinterpret_cast<VariantData*>(data));
}
operator ArrayConstRef() const {
return ArrayConstRef(_data);
}
VariantRef addElement() const {
return VariantRef(_pool, arrayAdd(_data, _pool));
}
FORCE_INLINE iterator begin() const {
if (!_data) return iterator();
return iterator(_pool, _data->head());
}
FORCE_INLINE iterator end() const {
return iterator();
}
FORCE_INLINE bool set(ArrayConstRef src) const {
if (!_data || !src._data) return false;
return _data->copyFrom(*src._data, _pool);
}
FORCE_INLINE bool operator==(ArrayRef rhs) const {
return arrayEquals(_data, rhs._data);
}
FORCE_INLINE VariantRef getElement(size_t index) const {
return VariantRef(_pool, _data ? _data->get(index) : 0);
}
FORCE_INLINE void remove(iterator it) const {
if (!_data) return;
_data->remove(it.internal());
}
FORCE_INLINE void remove(size_t index) const {
if (!_data) return;
_data->remove(index);
}
private:
MemoryPool* _pool;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename Visitor>
void objectAccept(const CollectionData *obj, Visitor &visitor) {
if (obj)
visitor.visitObject(*obj);
else
visitor.visitNull();
}
inline bool objectEquals(const CollectionData *lhs, const CollectionData *rhs) {
if (lhs == rhs) return true;
if (!lhs || !rhs) return false;
return lhs->equalsObject(*rhs);
}
template <typename TAdaptedString>
inline VariantData *objectGet(const CollectionData *obj, TAdaptedString key) {
if (!obj) return 0;
return obj->get(key);
}
template <typename TAdaptedString>
void objectRemove(CollectionData *obj, TAdaptedString key) {
if (!obj) return;
obj->remove(key);
}
template <typename TAdaptedString>
inline VariantData *objectGetOrCreate(CollectionData *obj, TAdaptedString key,
MemoryPool *pool) {
if (!obj) return 0;
if (key.isNull()) return 0;
VariantData *var = obj->get(key);
if (var) return var;
return obj->add(key, pool);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class String {
public:
String() : _data(0), _isStatic(true) {}
String(const char* data, bool isStaticData = true)
: _data(data), _isStatic(isStaticData) {}
const char* c_str() const {
return _data;
}
bool isNull() const {
return !_data;
}
bool isStatic() const {
return _isStatic;
}
friend bool operator==(String lhs, String rhs) {
if (lhs._data == rhs._data) return true;
if (!lhs._data) return false;
if (!rhs._data) return false;
return strcmp(lhs._data, rhs._data) == 0;
}
private:
const char* _data;
bool _isStatic;
};
class StringAdapter : public RamStringAdapter {
public:
StringAdapter(const String& str)
: RamStringAdapter(str.c_str()), _isStatic(str.isStatic()) {}
bool isStatic() const {
return _isStatic;
}
/* const char* save(MemoryPool* pool) const {
if (_isStatic) return c_str();
return RamStringAdapter::save(pool);
}*/
private:
bool _isStatic;
};
template <>
struct IsString<String> : true_type {};
inline StringAdapter adaptString(const String& str) {
return StringAdapter(str);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class Pair {
public:
Pair(MemoryPool* pool, VariantSlot* slot) {
if (slot) {
_key = String(slot->key(), !slot->ownsKey());
_value = VariantRef(pool, slot->data());
}
}
String key() const {
return _key;
}
VariantRef value() const {
return _value;
}
private:
String _key;
VariantRef _value;
};
class PairConst {
public:
PairConst(const VariantSlot* slot) {
if (slot) {
_key = String(slot->key(), !slot->ownsKey());
_value = VariantConstRef(slot->data());
}
}
String key() const {
return _key;
}
VariantConstRef value() const {
return _value;
}
private:
String _key;
VariantConstRef _value;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class PairPtr {
public:
PairPtr(MemoryPool *pool, VariantSlot *slot) : _pair(pool, slot) {}
const Pair *operator->() const {
return &_pair;
}
const Pair &operator*() const {
return _pair;
}
private:
Pair _pair;
};
class ObjectIterator {
public:
ObjectIterator() : _slot(0) {}
explicit ObjectIterator(MemoryPool *pool, VariantSlot *slot)
: _pool(pool), _slot(slot) {}
Pair operator*() const {
return Pair(_pool, _slot);
}
PairPtr operator->() {
return PairPtr(_pool, _slot);
}
bool operator==(const ObjectIterator &other) const {
return _slot == other._slot;
}
bool operator!=(const ObjectIterator &other) const {
return _slot != other._slot;
}
ObjectIterator &operator++() {
_slot = _slot->next();
return *this;
}
ObjectIterator &operator+=(size_t distance) {
_slot = _slot->next(distance);
return *this;
}
VariantSlot *internal() {
return _slot;
}
private:
MemoryPool *_pool;
VariantSlot *_slot;
};
class PairConstPtr {
public:
PairConstPtr(const VariantSlot *slot) : _pair(slot) {}
const PairConst *operator->() const {
return &_pair;
}
const PairConst &operator*() const {
return _pair;
}
private:
PairConst _pair;
};
class ObjectConstIterator {
public:
ObjectConstIterator() : _slot(0) {}
explicit ObjectConstIterator(const VariantSlot *slot) : _slot(slot) {}
PairConst operator*() const {
return PairConst(_slot);
}
PairConstPtr operator->() {
return PairConstPtr(_slot);
}
bool operator==(const ObjectConstIterator &other) const {
return _slot == other._slot;
}
bool operator!=(const ObjectConstIterator &other) const {
return _slot != other._slot;
}
ObjectConstIterator &operator++() {
_slot = _slot->next();
return *this;
}
ObjectConstIterator &operator+=(size_t distance) {
_slot = _slot->next(distance);
return *this;
}
const VariantSlot *internal() {
return _slot;
}
private:
const VariantSlot *_slot;
};
} // namespace ARDUINOJSON_NAMESPACE
#define JSON_OBJECT_SIZE(NUMBER_OF_ELEMENTS) \
((NUMBER_OF_ELEMENTS) * sizeof(ARDUINOJSON_NAMESPACE::VariantSlot))
namespace ARDUINOJSON_NAMESPACE {
template <typename TData>
class ObjectRefBase {
public:
operator VariantConstRef() const {
const void* data = _data; // prevent warning cast-align
return VariantConstRef(reinterpret_cast<const VariantData*>(data));
}
template <typename Visitor>
FORCE_INLINE void accept(Visitor& visitor) const {
objectAccept(_data, visitor);
}
FORCE_INLINE bool isNull() const {
return _data == 0;
}
FORCE_INLINE size_t memoryUsage() const {
return _data ? _data->memoryUsage() : 0;
}
FORCE_INLINE size_t nesting() const {
return _data ? _data->nesting() : 0;
}
FORCE_INLINE size_t size() const {
return _data ? _data->size() : 0;
}
protected:
ObjectRefBase(TData* data) : _data(data) {}
TData* _data;
};
class ObjectConstRef : public ObjectRefBase<const CollectionData>,
public Visitable {
friend class ObjectRef;
typedef ObjectRefBase<const CollectionData> base_type;
public:
typedef ObjectConstIterator iterator;
ObjectConstRef() : base_type(0) {}
ObjectConstRef(const CollectionData* data) : base_type(data) {}
FORCE_INLINE iterator begin() const {
if (!_data) return iterator();
return iterator(_data->head());
}
FORCE_INLINE iterator end() const {
return iterator();
}
template <typename TString>
FORCE_INLINE bool containsKey(const TString& key) const {
return !getMember(key).isUndefined();
}
template <typename TChar>
FORCE_INLINE bool containsKey(TChar* key) const {
return !getMember(key).isUndefined();
}
template <typename TString>
FORCE_INLINE VariantConstRef getMember(const TString& key) const {
return get_impl(adaptString(key));
}
template <typename TChar>
FORCE_INLINE VariantConstRef getMember(TChar* key) const {
return get_impl(adaptString(key));
}
template <typename TString>
FORCE_INLINE
typename enable_if<IsString<TString>::value, VariantConstRef>::type
operator[](const TString& key) const {
return get_impl(adaptString(key));
}
template <typename TChar>
FORCE_INLINE
typename enable_if<IsString<TChar*>::value, VariantConstRef>::type
operator[](TChar* key) const {
return get_impl(adaptString(key));
}
FORCE_INLINE bool operator==(ObjectConstRef rhs) const {
return objectEquals(_data, rhs._data);
}
private:
template <typename TAdaptedString>
FORCE_INLINE VariantConstRef get_impl(TAdaptedString key) const {
return VariantConstRef(objectGet(_data, key));
}
};
class ObjectRef : public ObjectRefBase<CollectionData>,
public ObjectShortcuts<ObjectRef>,
public Visitable {
typedef ObjectRefBase<CollectionData> base_type;
public:
typedef ObjectIterator iterator;
FORCE_INLINE ObjectRef() : base_type(0), _pool(0) {}
FORCE_INLINE ObjectRef(MemoryPool* buf, CollectionData* data)
: base_type(data), _pool(buf) {}
operator VariantRef() const {
void* data = _data; // prevent warning cast-align
return VariantRef(_pool, reinterpret_cast<VariantData*>(data));
}
operator ObjectConstRef() const {
return ObjectConstRef(_data);
}
FORCE_INLINE iterator begin() const {
if (!_data) return iterator();
return iterator(_pool, _data->head());
}
FORCE_INLINE iterator end() const {
return iterator();
}
void clear() const {
if (!_data) return;
_data->clear();
}
FORCE_INLINE bool set(ObjectConstRef src) {
if (!_data || !src._data) return false;
return _data->copyFrom(*src._data, _pool);
}
template <typename TString>
FORCE_INLINE VariantRef getMember(const TString& key) const {
return get_impl(adaptString(key));
}
template <typename TChar>
FORCE_INLINE VariantRef getMember(TChar* key) const {
return get_impl(adaptString(key));
}
template <typename TString>
FORCE_INLINE VariantRef getOrAddMember(const TString& key) const {
return getOrCreate_impl(adaptString(key));
}
template <typename TChar>
FORCE_INLINE VariantRef getOrAddMember(TChar* key) const {
return getOrCreate_impl(adaptString(key));
}
FORCE_INLINE bool operator==(ObjectRef rhs) const {
return objectEquals(_data, rhs._data);
}
FORCE_INLINE void remove(iterator it) const {
if (!_data) return;
_data->remove(it.internal());
}
template <typename TString>
FORCE_INLINE void remove(const TString& key) const {
objectRemove(_data, adaptString(key));
}
template <typename TChar>
FORCE_INLINE void remove(TChar* key) const {
objectRemove(_data, adaptString(key));
}
private:
template <typename TAdaptedString>
FORCE_INLINE VariantRef get_impl(TAdaptedString key) const {
return VariantRef(_pool, objectGet(_data, key));
}
template <typename TAdaptedString>
FORCE_INLINE VariantRef getOrCreate_impl(TAdaptedString key) const {
return VariantRef(_pool, objectGetOrCreate(_data, key, _pool));
}
MemoryPool* _pool;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class ArrayRef;
class ObjectRef;
class VariantRef;
template <typename T>
struct VariantTo {};
template <>
struct VariantTo<ArrayRef> {
typedef ArrayRef type;
};
template <>
struct VariantTo<ObjectRef> {
typedef ObjectRef type;
};
template <>
struct VariantTo<VariantRef> {
typedef VariantRef type;
};
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4522)
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename TArray>
class ElementProxy : public VariantOperators<ElementProxy<TArray> >,
public Visitable {
typedef ElementProxy<TArray> this_type;
public:
FORCE_INLINE ElementProxy(TArray array, size_t index)
: _array(array), _index(index) {}
FORCE_INLINE this_type& operator=(const this_type& src) {
getUpstreamElement().set(src.as<VariantConstRef>());
return *this;
}
template <typename T>
FORCE_INLINE this_type& operator=(const T& src) {
getUpstreamElement().set(src);
return *this;
}
template <typename T>
FORCE_INLINE this_type& operator=(T* src) {
getUpstreamElement().set(src);
return *this;
}
FORCE_INLINE void clear() const {
getUpstreamElement().clear();
}
FORCE_INLINE bool isNull() const {
return getUpstreamElement().isNull();
}
template <typename T>
FORCE_INLINE typename VariantAs<T>::type as() const {
return getUpstreamElement().template as<T>();
}
template <typename T>
FORCE_INLINE bool is() const {
return getUpstreamElement().template is<T>();
}
template <typename T>
FORCE_INLINE typename VariantTo<T>::type to() const {
return getUpstreamElement().template to<T>();
}
template <typename TValue>
FORCE_INLINE bool set(const TValue& value) const {
return getUpstreamElement().set(value);
}
template <typename TValue>
FORCE_INLINE bool set(TValue* value) const {
return getUpstreamElement().set(value);
}
template <typename Visitor>
void accept(Visitor& visitor) const {
return getUpstreamElement().accept(visitor);
}
FORCE_INLINE size_t size() const {
return getUpstreamElement().size();
}
template <typename TNestedKey>
VariantRef getMember(TNestedKey* key) const {
return getUpstreamElement().getMember(key);
}
template <typename TNestedKey>
VariantRef getMember(const TNestedKey& key) const {
return getUpstreamElement().getMember(key);
}
template <typename TNestedKey>
VariantRef getOrAddMember(TNestedKey* key) const {
return getUpstreamElement().getOrAddMember(key);
}
template <typename TNestedKey>
VariantRef getOrAddMember(const TNestedKey& key) const {
return getUpstreamElement().getOrAddMember(key);
}
VariantRef addElement() const {
return getUpstreamElement().addElement();
}
VariantRef getElement(size_t index) const {
return getUpstreamElement().getElement(index);
}
FORCE_INLINE void remove(size_t index) const {
getUpstreamElement().remove(index);
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value>::type remove(
TChar* key) const {
getUpstreamElement().remove(key);
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value>::type remove(
const TString& key) const {
getUpstreamElement().remove(key);
}
private:
FORCE_INLINE VariantRef getUpstreamElement() const {
return _array.getElement(_index);
}
TArray _array;
const size_t _index;
};
template <typename TArray>
inline ElementProxy<const TArray&> ArrayShortcuts<TArray>::operator[](
size_t index) const {
return ElementProxy<const TArray&>(*impl(), index);
}
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4522)
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename TObject, typename TStringRef>
class MemberProxy : public VariantOperators<MemberProxy<TObject, TStringRef> >,
public Visitable {
typedef MemberProxy<TObject, TStringRef> this_type;
public:
FORCE_INLINE MemberProxy(TObject variant, TStringRef key)
: _object(variant), _key(key) {}
FORCE_INLINE operator VariantConstRef() const {
return getUpstreamMember();
}
FORCE_INLINE this_type &operator=(const this_type &src) {
getOrAddUpstreamMember().set(src);
return *this;
}
template <typename TValue>
FORCE_INLINE typename enable_if<!is_array<TValue>::value, this_type &>::type
operator=(const TValue &src) {
getOrAddUpstreamMember().set(src);
return *this;
}
template <typename TChar>
FORCE_INLINE this_type &operator=(TChar *src) {
getOrAddUpstreamMember().set(src);
return *this;
}
FORCE_INLINE void clear() const {
getUpstreamMember().clear();
}
FORCE_INLINE bool isNull() const {
return getUpstreamMember().isNull();
}
template <typename TValue>
FORCE_INLINE typename VariantAs<TValue>::type as() const {
return getUpstreamMember().template as<TValue>();
}
template <typename TValue>
FORCE_INLINE bool is() const {
return getUpstreamMember().template is<TValue>();
}
FORCE_INLINE size_t size() const {
return getUpstreamMember().size();
}
FORCE_INLINE void remove(size_t index) const {
getUpstreamMember().remove(index);
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar *>::value>::type remove(
TChar *key) const {
getUpstreamMember().remove(key);
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value>::type remove(
const TString &key) const {
getUpstreamMember().remove(key);
}
template <typename TValue>
FORCE_INLINE typename VariantTo<TValue>::type to() {
return getOrAddUpstreamMember().template to<TValue>();
}
template <typename TValue>
FORCE_INLINE typename enable_if<!is_array<TValue>::value, bool>::type set(
const TValue &value) {
return getOrAddUpstreamMember().set(value);
}
template <typename TChar>
FORCE_INLINE bool set(const TChar *value) {
return getOrAddUpstreamMember().set(value);
}
template <typename Visitor>
void accept(Visitor &visitor) const {
return getUpstreamMember().accept(visitor);
}
FORCE_INLINE VariantRef addElement() const {
return getOrAddUpstreamMember().addElement();
}
FORCE_INLINE VariantRef getElement(size_t index) const {
return getUpstreamMember().getElement(index);
}
template <typename TChar>
FORCE_INLINE VariantRef getMember(TChar *key) const {
return getUpstreamMember().getMember(key);
}
template <typename TString>
FORCE_INLINE VariantRef getMember(const TString &key) const {
return getUpstreamMember().getMember(key);
}
template <typename TChar>
FORCE_INLINE VariantRef getOrAddMember(TChar *key) const {
return getOrAddUpstreamMember().getOrAddMember(key);
}
template <typename TString>
FORCE_INLINE VariantRef getOrAddMember(const TString &key) const {
return getOrAddUpstreamMember().getOrAddMember(key);
}
private:
FORCE_INLINE VariantRef getUpstreamMember() const {
return _object.getMember(_key);
}
FORCE_INLINE VariantRef getOrAddUpstreamMember() const {
return _object.getOrAddMember(_key);
}
TObject _object;
TStringRef _key;
};
template <typename TObject>
template <typename TString>
inline typename enable_if<IsString<TString>::value,
MemberProxy<const TObject &, const TString &> >::type
ObjectShortcuts<TObject>::operator[](const TString &key) const {
return MemberProxy<const TObject &, const TString &>(*impl(), key);
}
template <typename TObject>
template <typename TString>
inline typename enable_if<IsString<TString *>::value,
MemberProxy<const TObject &, TString *> >::type
ObjectShortcuts<TObject>::operator[](TString *key) const {
return MemberProxy<const TObject &, TString *>(*impl(), key);
}
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER
#pragma warning(pop)
#endif
namespace ARDUINOJSON_NAMESPACE {
class JsonDocument : public Visitable {
public:
template <typename Visitor>
void accept(Visitor& visitor) const {
return getVariant().accept(visitor);
}
template <typename T>
typename VariantAs<T>::type as() {
return getVariant().template as<T>();
}
template <typename T>
typename VariantConstAs<T>::type as() const {
return getVariant().template as<T>();
}
void clear() {
_pool.clear();
_data.setNull();
}
template <typename T>
bool is() const {
return getVariant().template is<T>();
}
bool isNull() const {
return getVariant().isNull();
}
size_t memoryUsage() const {
return _pool.size();
}
size_t nesting() const {
return _data.nesting();
}
size_t capacity() const {
return _pool.capacity();
}
size_t size() const {
return _data.size();
}
bool set(const JsonDocument& src) {
return to<VariantRef>().set(src.as<VariantRef>());
}
template <typename T>
typename enable_if<!is_base_of<JsonDocument, T>::value, bool>::type set(
const T& src) {
return to<VariantRef>().set(src);
}
template <typename T>
typename VariantTo<T>::type to() {
clear();
return getVariant().template to<T>();
}
MemoryPool& memoryPool() {
return _pool;
}
VariantData& data() {
return _data;
}
ArrayRef createNestedArray() {
return addElement().to<ArrayRef>();
}
template <typename TChar>
ArrayRef createNestedArray(TChar* key) {
return getOrAddMember(key).template to<ArrayRef>();
}
template <typename TString>
ArrayRef createNestedArray(const TString& key) {
return getOrAddMember(key).template to<ArrayRef>();
}
ObjectRef createNestedObject() {
return addElement().to<ObjectRef>();
}
template <typename TChar>
ObjectRef createNestedObject(TChar* key) {
return getOrAddMember(key).template to<ObjectRef>();
}
template <typename TString>
ObjectRef createNestedObject(const TString& key) {
return getOrAddMember(key).template to<ObjectRef>();
}
template <typename TChar>
bool containsKey(TChar* key) const {
return !getMember(key).isUndefined();
}
template <typename TString>
bool containsKey(const TString& key) const {
return !getMember(key).isUndefined();
}
template <typename TString>
FORCE_INLINE
typename enable_if<IsString<TString>::value,
MemberProxy<JsonDocument&, const TString&> >::type
operator[](const TString& key) {
return MemberProxy<JsonDocument&, const TString&>(*this, key);
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value,
MemberProxy<JsonDocument&, TChar*> >::type
operator[](TChar* key) {
return MemberProxy<JsonDocument&, TChar*>(*this, key);
}
template <typename TString>
FORCE_INLINE
typename enable_if<IsString<TString>::value, VariantConstRef>::type
operator[](const TString& key) const {
return getMember(key);
}
template <typename TChar>
FORCE_INLINE
typename enable_if<IsString<TChar*>::value, VariantConstRef>::type
operator[](TChar* key) const {
return getMember(key);
}
FORCE_INLINE ElementProxy<JsonDocument&> operator[](size_t index) {
return ElementProxy<JsonDocument&>(*this, index);
}
FORCE_INLINE VariantConstRef operator[](size_t index) const {
return getElement(index);
}
FORCE_INLINE VariantRef getElement(size_t index) {
return VariantRef(&_pool, _data.getElement(index));
}
FORCE_INLINE VariantConstRef getElement(size_t index) const {
return VariantConstRef(_data.getElement(index));
}
template <typename TChar>
FORCE_INLINE VariantConstRef getMember(TChar* key) const {
return VariantConstRef(_data.getMember(adaptString(key)));
}
template <typename TString>
FORCE_INLINE
typename enable_if<IsString<TString>::value, VariantConstRef>::type
getMember(const TString& key) const {
return VariantConstRef(_data.getMember(adaptString(key)));
}
template <typename TChar>
FORCE_INLINE VariantRef getMember(TChar* key) {
return VariantRef(&_pool, _data.getMember(adaptString(key)));
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value, VariantRef>::type
getMember(const TString& key) {
return VariantRef(&_pool, _data.getMember(adaptString(key)));
}
template <typename TChar>
FORCE_INLINE VariantRef getOrAddMember(TChar* key) {
return VariantRef(&_pool, _data.getOrAddMember(adaptString(key), &_pool));
}
template <typename TString>
FORCE_INLINE VariantRef getOrAddMember(const TString& key) {
return VariantRef(&_pool, _data.getOrAddMember(adaptString(key), &_pool));
}
FORCE_INLINE VariantRef addElement() {
return VariantRef(&_pool, _data.addElement(&_pool));
}
template <typename TValue>
FORCE_INLINE bool add(const TValue& value) {
return addElement().set(value);
}
template <typename TChar>
FORCE_INLINE bool add(TChar* value) {
return addElement().set(value);
}
FORCE_INLINE void remove(size_t index) {
_data.remove(index);
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value>::type remove(
TChar* key) {
_data.remove(adaptString(key));
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value>::type remove(
const TString& key) {
_data.remove(adaptString(key));
}
protected:
JsonDocument(MemoryPool pool) : _pool(pool) {
_data.setNull();
}
JsonDocument(char* buf, size_t capa) : _pool(buf, capa) {
_data.setNull();
}
void replacePool(MemoryPool pool) {
_pool = pool;
}
private:
VariantRef getVariant() {
return VariantRef(&_pool, &_data);
}
VariantConstRef getVariant() const {
return VariantConstRef(&_data);
}
MemoryPool _pool;
VariantData _data;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TAllocator>
class AllocatorOwner {
protected:
AllocatorOwner() {}
AllocatorOwner(const AllocatorOwner& src) : _allocator(src._allocator) {}
AllocatorOwner(TAllocator allocator) : _allocator(allocator) {}
void* allocate(size_t n) {
return _allocator.allocate(n);
}
void deallocate(void* p) {
_allocator.deallocate(p);
}
private:
TAllocator _allocator;
};
template <typename TAllocator>
class BasicJsonDocument : AllocatorOwner<TAllocator>, public JsonDocument {
public:
explicit BasicJsonDocument(size_t capa, TAllocator allocator = TAllocator())
: AllocatorOwner<TAllocator>(allocator), JsonDocument(allocPool(capa)) {}
BasicJsonDocument(const BasicJsonDocument& src)
: AllocatorOwner<TAllocator>(src),
JsonDocument(allocPool(src.memoryUsage())) {
set(src);
}
template <typename T>
BasicJsonDocument(const T& src,
typename enable_if<IsVisitable<T>::value>::type* = 0)
: JsonDocument(allocPool(src.memoryUsage())) {
set(src);
}
BasicJsonDocument(VariantRef src)
: JsonDocument(allocPool(src.memoryUsage())) {
set(src);
}
~BasicJsonDocument() {
freePool();
}
BasicJsonDocument& operator=(const BasicJsonDocument& src) {
reallocPoolIfTooSmall(src.memoryUsage());
set(src);
return *this;
}
template <typename T>
BasicJsonDocument& operator=(const T& src) {
reallocPoolIfTooSmall(src.memoryUsage());
set(src);
return *this;
}
private:
MemoryPool allocPool(size_t requiredSize) {
size_t capa = addPadding(requiredSize);
return MemoryPool(reinterpret_cast<char*>(this->allocate(capa)), capa);
}
void reallocPoolIfTooSmall(size_t requiredSize) {
if (requiredSize <= capacity()) return;
freePool();
replacePool(allocPool(addPadding(requiredSize)));
}
void freePool() {
this->deallocate(memoryPool().buffer());
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
struct DefaultAllocator {
void* allocate(size_t n) {
return malloc(n);
}
void deallocate(void* p) {
free(p);
}
};
typedef BasicJsonDocument<DefaultAllocator> DynamicJsonDocument;
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <size_t desiredCapacity>
class StaticJsonDocument : public JsonDocument {
static const size_t _capacity =
AddPadding<Max<1, desiredCapacity>::value>::value;
public:
StaticJsonDocument() : JsonDocument(_buffer, _capacity) {}
StaticJsonDocument(const StaticJsonDocument& src)
: JsonDocument(_buffer, _capacity) {
set(src);
}
template <typename T>
StaticJsonDocument(const T& src,
typename enable_if<IsVisitable<T>::value>::type* = 0)
: JsonDocument(_buffer, _capacity) {
set(src);
}
StaticJsonDocument(VariantRef src) : JsonDocument(_buffer, _capacity) {
set(src);
}
StaticJsonDocument operator=(const StaticJsonDocument& src) {
set(src);
return *this;
}
template <typename T>
StaticJsonDocument operator=(const T& src) {
set(src);
return *this;
}
private:
char _buffer[_capacity];
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TArray>
inline ArrayRef ArrayShortcuts<TArray>::createNestedArray() const {
return impl()->addElement().template to<ArrayRef>();
}
template <typename TArray>
inline ObjectRef ArrayShortcuts<TArray>::createNestedObject() const {
return impl()->addElement().template to<ObjectRef>();
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T, size_t N>
inline bool copyArray(T (&src)[N], ArrayRef dst) {
return copyArray(src, N, dst);
}
template <typename T>
inline bool copyArray(T* src, size_t len, ArrayRef dst) {
bool ok = true;
for (size_t i = 0; i < len; i++) {
ok &= dst.add(src[i]);
}
return ok;
}
template <typename T, size_t N1, size_t N2>
inline bool copyArray(T (&src)[N1][N2], ArrayRef dst) {
bool ok = true;
for (size_t i = 0; i < N1; i++) {
ArrayRef nestedArray = dst.createNestedArray();
for (size_t j = 0; j < N2; j++) {
ok &= nestedArray.add(src[i][j]);
}
}
return ok;
}
template <typename T, size_t N>
inline size_t copyArray(ArrayConstRef src, T (&dst)[N]) {
return copyArray(src, dst, N);
}
template <typename T>
inline size_t copyArray(ArrayConstRef src, T* dst, size_t len) {
size_t i = 0;
for (ArrayConstRef::iterator it = src.begin(); it != src.end() && i < len;
++it)
dst[i++] = *it;
return i;
}
template <typename T, size_t N1, size_t N2>
inline void copyArray(ArrayConstRef src, T (&dst)[N1][N2]) {
size_t i = 0;
for (ArrayConstRef::iterator it = src.begin(); it != src.end() && i < N1;
++it) {
copyArray(it->as<ArrayConstRef>(), dst[i++]);
}
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
inline VariantSlot* CollectionData::addSlot(MemoryPool* pool) {
VariantSlot* slot = pool->allocVariant();
if (!slot) return 0;
if (_tail) {
_tail->setNextNotNull(slot);
_tail = slot;
} else {
_head = slot;
_tail = slot;
}
slot->clear();
return slot;
}
inline VariantData* CollectionData::add(MemoryPool* pool) {
return slotData(addSlot(pool));
}
template <typename TAdaptedString>
inline VariantData* CollectionData::add(TAdaptedString key, MemoryPool* pool) {
VariantSlot* slot = addSlot(pool);
if (!slotSetKey(slot, key, pool)) return 0;
return slot->data();
}
inline void CollectionData::clear() {
_head = 0;
_tail = 0;
}
template <typename TAdaptedString>
inline bool CollectionData::containsKey(const TAdaptedString& key) const {
return getSlot(key) != 0;
}
inline bool CollectionData::copyFrom(const CollectionData& src,
MemoryPool* pool) {
clear();
for (VariantSlot* s = src._head; s; s = s->next()) {
VariantData* var;
if (s->key() != 0) {
if (s->ownsKey())
var = add(RamStringAdapter(s->key()), pool);
else
var = add(ConstRamStringAdapter(s->key()), pool);
} else {
var = add(pool);
}
if (!var) return false;
if (!var->copyFrom(*s->data(), pool)) return false;
}
return true;
}
inline bool CollectionData::equalsObject(const CollectionData& other) const {
size_t count = 0;
for (VariantSlot* slot = _head; slot; slot = slot->next()) {
VariantData* v1 = slot->data();
VariantData* v2 = other.get(adaptString(slot->key()));
if (!variantEquals(v1, v2)) return false;
count++;
}
return count == other.size();
}
inline bool CollectionData::equalsArray(const CollectionData& other) const {
VariantSlot* s1 = _head;
VariantSlot* s2 = other._head;
for (;;) {
if (s1 == s2) return true;
if (!s1 || !s2) return false;
if (!variantEquals(s1->data(), s2->data())) return false;
s1 = s1->next();
s2 = s2->next();
}
}
template <typename TAdaptedString>
inline VariantSlot* CollectionData::getSlot(TAdaptedString key) const {
VariantSlot* slot = _head;
while (slot) {
if (key.equals(slot->key())) break;
slot = slot->next();
}
return slot;
}
inline VariantSlot* CollectionData::getSlot(size_t index) const {
return _head->next(index);
}
inline VariantSlot* CollectionData::getPreviousSlot(VariantSlot* target) const {
VariantSlot* current = _head;
while (current) {
VariantSlot* next = current->next();
if (next == target) return current;
current = next;
}
return 0;
}
template <typename TAdaptedString>
inline VariantData* CollectionData::get(TAdaptedString key) const {
VariantSlot* slot = getSlot(key);
return slot ? slot->data() : 0;
}
inline VariantData* CollectionData::get(size_t index) const {
VariantSlot* slot = getSlot(index);
return slot ? slot->data() : 0;
}
inline void CollectionData::remove(VariantSlot* slot) {
if (!slot) return;
VariantSlot* prev = getPreviousSlot(slot);
VariantSlot* next = slot->next();
if (prev)
prev->setNext(next);
else
_head = next;
if (!next) _tail = prev;
}
inline void CollectionData::remove(size_t index) {
remove(getSlot(index));
}
inline size_t CollectionData::memoryUsage() const {
size_t total = 0;
for (VariantSlot* s = _head; s; s = s->next()) {
total += sizeof(VariantSlot) + s->data()->memoryUsage();
if (s->ownsKey()) total += strlen(s->key()) + 1;
}
return total;
}
inline size_t CollectionData::nesting() const {
size_t maxChildNesting = 0;
for (VariantSlot* s = _head; s; s = s->next()) {
size_t childNesting = s->data()->nesting();
if (childNesting > maxChildNesting) maxChildNesting = childNesting;
}
return maxChildNesting + 1;
}
inline size_t CollectionData::size() const {
return slotSize(_head);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TObject>
template <typename TString>
inline ArrayRef ObjectShortcuts<TObject>::createNestedArray(
const TString& key) const {
return impl()->getOrAddMember(key).template to<ArrayRef>();
}
template <typename TObject>
template <typename TChar>
inline ArrayRef ObjectShortcuts<TObject>::createNestedArray(TChar* key) const {
return impl()->getOrAddMember(key).template to<ArrayRef>();
}
template <typename TObject>
template <typename TString>
inline ObjectRef ObjectShortcuts<TObject>::createNestedObject(
const TString& key) const {
return impl()->getOrAddMember(key).template to<ObjectRef>();
}
template <typename TObject>
template <typename TChar>
inline ObjectRef ObjectShortcuts<TObject>::createNestedObject(
TChar* key) const {
return impl()->getOrAddMember(key).template to<ObjectRef>();
}
template <typename TObject>
template <typename TString>
inline typename enable_if<IsString<TString>::value, bool>::type
ObjectShortcuts<TObject>::containsKey(const TString& key) const {
return !impl()->getMember(key).isUndefined();
}
template <typename TObject>
template <typename TChar>
inline typename enable_if<IsString<TChar*>::value, bool>::type
ObjectShortcuts<TObject>::containsKey(TChar* key) const {
return !impl()->getMember(key).isUndefined();
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
inline typename enable_if<is_same<ArrayConstRef, T>::value, T>::type variantAs(
const VariantData* _data) {
return ArrayConstRef(variantAsArray(_data));
}
template <typename T>
inline typename enable_if<is_same<ObjectConstRef, T>::value, T>::type variantAs(
const VariantData* _data) {
return ObjectConstRef(variantAsObject(_data));
}
template <typename T>
inline typename enable_if<is_same<VariantConstRef, T>::value, T>::type
variantAs(const VariantData* _data) {
return VariantConstRef(_data);
}
template <typename T>
inline typename enable_if<IsWriteableString<T>::value, T>::type variantAs(
const VariantData* _data) {
const char* cstr = _data != 0 ? _data->asString() : 0;
if (cstr) return T(cstr);
T s;
serializeJson(VariantConstRef(_data), s);
return s;
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
inline bool isdigit(char c) {
return '0' <= c && c <= '9';
}
inline bool issign(char c) {
return '-' == c || c == '+';
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TFloat, typename TUInt>
struct ParsedNumber {
ParsedNumber() : uintValue(0), floatValue(0), _type(VALUE_IS_NULL) {}
ParsedNumber(TUInt value, bool is_negative)
: uintValue(value),
floatValue(TFloat(value)),
_type(uint8_t(is_negative ? VALUE_IS_NEGATIVE_INTEGER
: VALUE_IS_POSITIVE_INTEGER)) {}
ParsedNumber(TFloat value) : floatValue(value), _type(VALUE_IS_FLOAT) {}
template <typename T>
T as() const {
switch (_type) {
case VALUE_IS_NEGATIVE_INTEGER:
return convertNegativeInteger<T>(uintValue);
case VALUE_IS_POSITIVE_INTEGER:
return convertPositiveInteger<T>(uintValue);
case VALUE_IS_FLOAT:
return convertFloat<T>(floatValue);
default:
return 0;
}
}
uint8_t type() const {
return _type;
}
TUInt uintValue;
TFloat floatValue;
uint8_t _type;
};
template <typename A, typename B>
struct choose_largest : conditional<(sizeof(A) > sizeof(B)), A, B> {};
template <typename TFloat, typename TUInt>
inline ParsedNumber<TFloat, TUInt> parseNumber(const char *s) {
typedef FloatTraits<TFloat> traits;
typedef typename choose_largest<typename traits::mantissa_type, TUInt>::type
mantissa_t;
typedef typename traits::exponent_type exponent_t;
typedef ParsedNumber<TFloat, TUInt> return_type;
ARDUINOJSON_ASSERT(s != 0);
bool is_negative = false;
switch (*s) {
case '-':
is_negative = true;
s++;
break;
case '+':
s++;
break;
}
#if ARDUINOJSON_ENABLE_NAN
if (*s == 'n' || *s == 'N') return traits::nan();
#endif
#if ARDUINOJSON_ENABLE_INFINITY
if (*s == 'i' || *s == 'I')
return is_negative ? -traits::inf() : traits::inf();
#endif
if (!isdigit(*s) && *s != '.') return return_type();
mantissa_t mantissa = 0;
exponent_t exponent_offset = 0;
const mantissa_t maxUint = TUInt(-1);
while (isdigit(*s)) {
uint8_t digit = uint8_t(*s - '0');
if (mantissa > maxUint / 10) break;
mantissa *= 10;
if (mantissa > maxUint - digit) break;
mantissa += digit;
s++;
}
if (*s == '\0') return return_type(TUInt(mantissa), is_negative);
while (mantissa > traits::mantissa_max) {
mantissa /= 10;
exponent_offset++;
}
while (isdigit(*s)) {
exponent_offset++;
s++;
}
if (*s == '.') {
s++;
while (isdigit(*s)) {
if (mantissa < traits::mantissa_max / 10) {
mantissa = mantissa * 10 + uint8_t(*s - '0');
exponent_offset--;
}
s++;
}
}
int exponent = 0;
if (*s == 'e' || *s == 'E') {
s++;
bool negative_exponent = false;
if (*s == '-') {
negative_exponent = true;
s++;
} else if (*s == '+') {
s++;
}
while (isdigit(*s)) {
exponent = exponent * 10 + (*s - '0');
if (exponent + exponent_offset > traits::exponent_max) {
if (negative_exponent)
return is_negative ? -0.0f : 0.0f;
else
return is_negative ? -traits::inf() : traits::inf();
}
s++;
}
if (negative_exponent) exponent = -exponent;
}
exponent += exponent_offset;
if (*s != '\0') return return_type();
TFloat result = traits::make_float(static_cast<TFloat>(mantissa), exponent);
return is_negative ? -result : result;
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
inline T parseFloat(const char* s) {
typedef typename choose_largest<Float, T>::type TFloat;
return parseNumber<TFloat, UInt>(s).template as<T>();
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
T parseInteger(const char *s) {
typedef typename choose_largest<UInt, typename make_unsigned<T>::type>::type
TUInt;
return parseNumber<Float, TUInt>(s).template as<T>();
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
inline T VariantData::asIntegral() const {
switch (type()) {
case VALUE_IS_POSITIVE_INTEGER:
case VALUE_IS_BOOLEAN:
return convertPositiveInteger<T>(_content.asInteger);
case VALUE_IS_NEGATIVE_INTEGER:
return convertNegativeInteger<T>(_content.asInteger);
case VALUE_IS_LINKED_STRING:
case VALUE_IS_OWNED_STRING:
return parseInteger<T>(_content.asString);
case VALUE_IS_FLOAT:
return convertFloat<T>(_content.asFloat);
default:
return 0;
}
}
inline bool VariantData::asBoolean() const {
switch (type()) {
case VALUE_IS_POSITIVE_INTEGER:
case VALUE_IS_BOOLEAN:
case VALUE_IS_NEGATIVE_INTEGER:
return _content.asInteger != 0;
case VALUE_IS_FLOAT:
return _content.asFloat != 0;
case VALUE_IS_LINKED_STRING:
case VALUE_IS_OWNED_STRING:
return strcmp("true", _content.asString) == 0;
default:
return false;
}
}
template <typename T>
inline T VariantData::asFloat() const {
switch (type()) {
case VALUE_IS_POSITIVE_INTEGER:
case VALUE_IS_BOOLEAN:
return static_cast<T>(_content.asInteger);
case VALUE_IS_NEGATIVE_INTEGER:
return -static_cast<T>(_content.asInteger);
case VALUE_IS_LINKED_STRING:
case VALUE_IS_OWNED_STRING:
return parseFloat<T>(_content.asString);
case VALUE_IS_FLOAT:
return static_cast<T>(_content.asFloat);
default:
return 0;
}
}
inline const char *VariantData::asString() const {
switch (type()) {
case VALUE_IS_LINKED_STRING:
case VALUE_IS_OWNED_STRING:
return _content.asString;
default:
return 0;
}
}
template <typename TVariant>
typename enable_if<IsVisitable<TVariant>::value, bool>::type VariantRef::set(
const TVariant &value) const {
VariantConstRef v = value;
return variantCopyFrom(_data, v._data, _pool);
}
template <typename T>
inline typename enable_if<is_same<T, ArrayRef>::value, T>::type VariantRef::as()
const {
return ArrayRef(_pool, _data != 0 ? _data->asArray() : 0);
}
template <typename T>
inline typename enable_if<is_same<T, ObjectRef>::value, T>::type
VariantRef::as() const {
return ObjectRef(_pool, variantAsObject(_data));
}
template <typename T>
inline typename enable_if<is_same<T, ArrayRef>::value, ArrayRef>::type
VariantRef::to() const {
return ArrayRef(_pool, variantToArray(_data));
}
template <typename T>
typename enable_if<is_same<T, ObjectRef>::value, ObjectRef>::type
VariantRef::to() const {
return ObjectRef(_pool, variantToObject(_data));
}
template <typename T>
typename enable_if<is_same<T, VariantRef>::value, VariantRef>::type
VariantRef::to() const {
variantSetNull(_data);
return *this;
}
inline VariantConstRef VariantConstRef::operator[](size_t index) const {
return ArrayConstRef(_data != 0 ? _data->asArray() : 0)[index];
}
inline VariantRef VariantRef::addElement() const {
return VariantRef(_pool, variantAdd(_data, _pool));
}
inline VariantRef VariantRef::getElement(size_t index) const {
return VariantRef(_pool, _data != 0 ? _data->getElement(index) : 0);
}
template <typename TChar>
inline VariantRef VariantRef::getMember(TChar *key) const {
return VariantRef(_pool, _data != 0 ? _data->getMember(adaptString(key)) : 0);
}
template <typename TString>
inline typename enable_if<IsString<TString>::value, VariantRef>::type
VariantRef::getMember(const TString &key) const {
return VariantRef(_pool, _data != 0 ? _data->getMember(adaptString(key)) : 0);
}
template <typename TChar>
inline VariantRef VariantRef::getOrAddMember(TChar *key) const {
return VariantRef(_pool, variantGetOrCreate(_data, key, _pool));
}
template <typename TString>
inline VariantRef VariantRef::getOrAddMember(const TString &key) const {
return VariantRef(_pool, variantGetOrCreate(_data, key, _pool));
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class StringBuilder {
public:
explicit StringBuilder(MemoryPool* parent) : _parent(parent), _size(0) {
_slot = _parent->allocExpandableString();
}
void append(const char* s) {
while (*s) append(*s++);
}
void append(const char* s, size_t n) {
while (n-- > 0) append(*s++);
}
void append(char c) {
if (!_slot.value) return;
if (_size >= _slot.size) {
_slot.value = 0;
return;
}
_slot.value[_size++] = c;
}
char* complete() {
append('\0');
if (_slot.value) {
_parent->freezeString(_slot, _size);
}
return _slot.value;
}
private:
MemoryPool* _parent;
size_t _size;
StringSlot _slot;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class StringCopier {
public:
typedef ARDUINOJSON_NAMESPACE::StringBuilder StringBuilder;
StringCopier(MemoryPool* pool) : _pool(pool) {}
StringBuilder startString() {
return StringBuilder(_pool);
}
private:
MemoryPool* _pool;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class StringMover {
public:
class StringBuilder {
public:
StringBuilder(char** ptr) : _writePtr(ptr), _startPtr(*ptr) {}
void append(char c) {
*(*_writePtr)++ = char(c);
}
char* complete() const {
*(*_writePtr)++ = 0;
return _startPtr;
}
private:
char** _writePtr;
char* _startPtr;
};
StringMover(char* ptr) : _ptr(ptr) {}
StringBuilder startString() {
return StringBuilder(&_ptr);
}
private:
char* _ptr;
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TInput, typename Enable = void>
struct StringStorage {
typedef StringCopier type;
static type create(MemoryPool& pool, TInput&) {
return type(&pool);
}
};
template <typename TChar>
struct StringStorage<TChar*,
typename enable_if<!is_const<TChar>::value>::type> {
typedef StringMover type;
static type create(MemoryPool&, TChar* input) {
return type(reinterpret_cast<char*>(input));
}
};
template <typename TInput>
typename StringStorage<TInput>::type makeStringStorage(MemoryPool& pool,
TInput& input) {
return StringStorage<TInput>::create(pool, input);
}
template <typename TChar>
typename StringStorage<TChar*>::type makeStringStorage(MemoryPool& pool,
TChar* input) {
return StringStorage<TChar*>::create(pool, input);
}
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_ARDUINO_STREAM
#include <Stream.h>
namespace ARDUINOJSON_NAMESPACE {
struct ArduinoStreamReader {
Stream& _stream;
public:
explicit ArduinoStreamReader(Stream& stream) : _stream(stream) {}
int read() {
uint8_t c;
return _stream.readBytes(&c, 1) ? c : -1;
}
};
inline ArduinoStreamReader makeReader(Stream& input) {
return ArduinoStreamReader(input);
}
} // namespace ARDUINOJSON_NAMESPACE
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
struct IsCharOrVoid {
static const bool value =
is_same<T, void>::value || is_same<T, char>::value ||
is_same<T, unsigned char>::value || is_same<T, signed char>::value;
};
template <typename T>
struct IsCharOrVoid<const T> : IsCharOrVoid<T> {};
class UnsafeCharPointerReader {
const char* _ptr;
public:
explicit UnsafeCharPointerReader(const char* ptr)
: _ptr(ptr ? ptr : reinterpret_cast<const char*>("")) {}
int read() {
return static_cast<unsigned char>(*_ptr++);
}
};
class SafeCharPointerReader {
const char* _ptr;
const char* _end;
public:
explicit SafeCharPointerReader(const char* ptr, size_t len)
: _ptr(ptr ? ptr : reinterpret_cast<const char*>("")), _end(_ptr + len) {}
int read() {
if (_ptr < _end)
return static_cast<unsigned char>(*_ptr++);
else
return -1;
}
};
template <typename TChar>
inline typename enable_if<IsCharOrVoid<TChar>::value,
UnsafeCharPointerReader>::type
makeReader(TChar* input) {
return UnsafeCharPointerReader(reinterpret_cast<const char*>(input));
}
template <typename TChar>
inline
typename enable_if<IsCharOrVoid<TChar>::value, SafeCharPointerReader>::type
makeReader(TChar* input, size_t n) {
return SafeCharPointerReader(reinterpret_cast<const char*>(input), n);
}
#if ARDUINOJSON_ENABLE_ARDUINO_STRING
inline SafeCharPointerReader makeReader(const ::String& input) {
return SafeCharPointerReader(input.c_str(), input.length());
}
#endif
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_STD_STREAM
#include <ostream>
#endif
namespace ARDUINOJSON_NAMESPACE {
class DeserializationError {
typedef void (DeserializationError::*bool_type)() const;
void safeBoolHelper() const {}
public:
enum Code {
Ok,
IncompleteInput,
InvalidInput,
NoMemory,
NotSupported,
TooDeep
};
DeserializationError() {}
DeserializationError(Code c) : _code(c) {}
friend bool operator==(const DeserializationError& lhs,
const DeserializationError& rhs) {
return lhs._code == rhs._code;
}
friend bool operator!=(const DeserializationError& lhs,
const DeserializationError& rhs) {
return lhs._code != rhs._code;
}
friend bool operator==(const DeserializationError& lhs, Code rhs) {
return lhs._code == rhs;
}
friend bool operator==(Code lhs, const DeserializationError& rhs) {
return lhs == rhs._code;
}
friend bool operator!=(const DeserializationError& lhs, Code rhs) {
return lhs._code != rhs;
}
friend bool operator!=(Code lhs, const DeserializationError& rhs) {
return lhs != rhs._code;
}
operator bool_type() const {
return _code != Ok ? &DeserializationError::safeBoolHelper : 0;
}
friend bool operator==(bool value, const DeserializationError& err) {
return static_cast<bool>(err) == value;
}
friend bool operator==(const DeserializationError& err, bool value) {
return static_cast<bool>(err) == value;
}
friend bool operator!=(bool value, const DeserializationError& err) {
return static_cast<bool>(err) != value;
}
friend bool operator!=(const DeserializationError& err, bool value) {
return static_cast<bool>(err) != value;
}
Code code() const {
return _code;
}
const char* c_str() const {
switch (_code) {
case Ok:
return "Ok";
case TooDeep:
return "TooDeep";
case NoMemory:
return "NoMemory";
case InvalidInput:
return "InvalidInput";
case IncompleteInput:
return "IncompleteInput";
case NotSupported:
return "NotSupported";
default:
return "???";
}
}
private:
Code _code;
};
#if ARDUINOJSON_ENABLE_STD_STREAM
inline std::ostream& operator<<(std::ostream& s,
const DeserializationError& e) {
s << e.c_str();
return s;
}
inline std::ostream& operator<<(std::ostream& s, DeserializationError::Code c) {
s << DeserializationError(c).c_str();
return s;
}
#endif
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_PROGMEM
namespace ARDUINOJSON_NAMESPACE {
class UnsafeFlashStringReader {
const char* _ptr;
public:
explicit UnsafeFlashStringReader(const __FlashStringHelper* ptr)
: _ptr(reinterpret_cast<const char*>(ptr)) {}
int read() {
return pgm_read_byte_near(_ptr++);
}
};
class SafeFlashStringReader {
const char* _ptr;
const char* _end;
public:
explicit SafeFlashStringReader(const __FlashStringHelper* ptr, size_t size)
: _ptr(reinterpret_cast<const char*>(ptr)), _end(_ptr + size) {}
int read() {
if (_ptr < _end)
return pgm_read_byte_near(_ptr++);
else
return -1;
}
};
inline UnsafeFlashStringReader makeReader(const __FlashStringHelper* input) {
return UnsafeFlashStringReader(input);
}
inline SafeFlashStringReader makeReader(const __FlashStringHelper* input,
size_t size) {
return SafeFlashStringReader(input, size);
}
} // namespace ARDUINOJSON_NAMESPACE
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename TIterator>
class IteratorReader {
TIterator _ptr, _end;
public:
explicit IteratorReader(TIterator begin, TIterator end)
: _ptr(begin), _end(end) {}
int read() {
if (_ptr < _end)
return static_cast<unsigned char>(*_ptr++);
else
return -1;
}
};
template <typename TInput>
inline IteratorReader<typename TInput::const_iterator> makeReader(
const TInput& input) {
return IteratorReader<typename TInput::const_iterator>(input.begin(),
input.end());
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
struct NestingLimit {
NestingLimit() : value(ARDUINOJSON_DEFAULT_NESTING_LIMIT) {}
explicit NestingLimit(uint8_t n) : value(n) {}
uint8_t value;
};
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_STD_STREAM
#include <istream>
namespace ARDUINOJSON_NAMESPACE {
class StdStreamReader {
std::istream& _stream;
char _current;
public:
explicit StdStreamReader(std::istream& stream)
: _stream(stream), _current(0) {}
int read() {
return _stream.get();
}
private:
StdStreamReader& operator=(const StdStreamReader&); // Visual Studio C4512
};
inline StdStreamReader makeReader(std::istream& input) {
return StdStreamReader(input);
}
} // namespace ARDUINOJSON_NAMESPACE
#endif
namespace ARDUINOJSON_NAMESPACE {
template <template <typename, typename> class TDeserializer, typename TReader,
typename TWriter>
TDeserializer<TReader, TWriter> makeDeserializer(MemoryPool &pool,
TReader reader, TWriter writer,
uint8_t nestingLimit) {
return TDeserializer<TReader, TWriter>(pool, reader, writer, nestingLimit);
}
template <template <typename, typename> class TDeserializer, typename TString>
typename enable_if<!is_array<TString>::value, DeserializationError>::type
deserialize(JsonDocument &doc, const TString &input,
NestingLimit nestingLimit) {
doc.clear();
return makeDeserializer<TDeserializer>(
doc.memoryPool(), makeReader(input),
makeStringStorage(doc.memoryPool(), input), nestingLimit.value)
.parse(doc.data());
}
template <template <typename, typename> class TDeserializer, typename TChar>
DeserializationError deserialize(JsonDocument &doc, TChar *input,
NestingLimit nestingLimit) {
doc.clear();
return makeDeserializer<TDeserializer>(
doc.memoryPool(), makeReader(input),
makeStringStorage(doc.memoryPool(), input), nestingLimit.value)
.parse(doc.data());
}
template <template <typename, typename> class TDeserializer, typename TChar>
DeserializationError deserialize(JsonDocument &doc, TChar *input,
size_t inputSize, NestingLimit nestingLimit) {
doc.clear();
return makeDeserializer<TDeserializer>(
doc.memoryPool(), makeReader(input, inputSize),
makeStringStorage(doc.memoryPool(), input), nestingLimit.value)
.parse(doc.data());
}
template <template <typename, typename> class TDeserializer, typename TStream>
DeserializationError deserialize(JsonDocument &doc, TStream &input,
NestingLimit nestingLimit) {
doc.clear();
return makeDeserializer<TDeserializer>(
doc.memoryPool(), makeReader(input),
makeStringStorage(doc.memoryPool(), input), nestingLimit.value)
.parse(doc.data());
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class EscapeSequence {
public:
static char escapeChar(char c) {
const char *p = escapeTable(false);
while (p[0] && p[1] != c) {
p += 2;
}
return p[0];
}
static char unescapeChar(char c) {
const char *p = escapeTable(true);
for (;;) {
if (p[0] == '\0') return c;
if (p[0] == c) return p[1];
p += 2;
}
}
private:
static const char *escapeTable(bool excludeIdenticals) {
return &"\"\"\\\\b\bf\fn\nr\rt\t"[excludeIdenticals ? 4 : 0];
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
namespace Utf8 {
template <typename TStringBuilder>
inline void encodeCodepoint(uint16_t codepoint, TStringBuilder &str) {
if (codepoint < 0x80) {
str.append(char(codepoint));
return;
}
if (codepoint >= 0x00000800) {
str.append(char(0xe0 /*0b11100000*/ | (codepoint >> 12)));
str.append(char(((codepoint >> 6) & 0x3f /*0b00111111*/) | 0x80));
} else {
str.append(char(0xc0 /*0b11000000*/ | (codepoint >> 6)));
}
str.append(char((codepoint & 0x3f /*0b00111111*/) | 0x80));
}
} // namespace Utf8
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TReader, typename TStringStorage>
class JsonDeserializer {
typedef typename remove_reference<TStringStorage>::type::StringBuilder
StringBuilder;
public:
JsonDeserializer(MemoryPool &pool, TReader reader,
TStringStorage stringStorage, uint8_t nestingLimit)
: _pool(&pool),
_reader(reader),
_stringStorage(stringStorage),
_nestingLimit(nestingLimit),
_loaded(false) {}
DeserializationError parse(VariantData &variant) {
DeserializationError err = parseVariant(variant);
if (!err && _current != 0 && !variant.isEnclosed()) {
err = DeserializationError::InvalidInput;
}
return err;
}
private:
JsonDeserializer &operator=(const JsonDeserializer &); // non-copiable
char current() {
if (!_loaded) {
int c = _reader.read();
_current = static_cast<char>(c > 0 ? c : 0);
_loaded = true;
}
return _current;
}
void move() {
_loaded = false;
}
FORCE_INLINE bool eat(char charToSkip) {
if (current() != charToSkip) return false;
move();
return true;
}
DeserializationError parseVariant(VariantData &variant) {
DeserializationError err = skipSpacesAndComments();
if (err) return err;
switch (current()) {
case '[':
return parseArray(variant.toArray());
case '{':
return parseObject(variant.toObject());
case '\"':
case '\'':
return parseStringValue(variant);
default:
return parseNumericValue(variant);
}
}
DeserializationError parseArray(CollectionData &array) {
if (_nestingLimit == 0) return DeserializationError::TooDeep;
if (!eat('[')) return DeserializationError::InvalidInput;
DeserializationError err = skipSpacesAndComments();
if (err) return err;
if (eat(']')) return DeserializationError::Ok;
for (;;) {
VariantData *value = array.add(_pool);
if (!value) return DeserializationError::NoMemory;
_nestingLimit--;
err = parseVariant(*value);
_nestingLimit++;
if (err) return err;
err = skipSpacesAndComments();
if (err) return err;
if (eat(']')) return DeserializationError::Ok;
if (!eat(',')) return DeserializationError::InvalidInput;
}
}
DeserializationError parseObject(CollectionData &object) {
if (_nestingLimit == 0) return DeserializationError::TooDeep;
if (!eat('{')) return DeserializationError::InvalidInput;
DeserializationError err = skipSpacesAndComments();
if (err) return err;
if (eat('}')) return DeserializationError::Ok;
for (;;) {
VariantSlot *slot = object.addSlot(_pool);
if (!slot) return DeserializationError::NoMemory;
const char *key;
err = parseKey(key);
if (err) return err;
slot->setOwnedKey(make_not_null(key));
err = skipSpacesAndComments();
if (err) return err; // Colon
if (!eat(':')) return DeserializationError::InvalidInput;
_nestingLimit--;
err = parseVariant(*slot->data());
_nestingLimit++;
if (err) return err;
err = skipSpacesAndComments();
if (err) return err;
if (eat('}')) return DeserializationError::Ok;
if (!eat(',')) return DeserializationError::InvalidInput;
err = skipSpacesAndComments();
if (err) return err;
}
}
DeserializationError parseKey(const char *&key) {
if (isQuote(current())) {
return parseQuotedString(key);
} else {
return parseNonQuotedString(key);
}
}
DeserializationError parseStringValue(VariantData &variant) {
const char *value;
DeserializationError err = parseQuotedString(value);
if (err) return err;
variant.setOwnedString(make_not_null(value));
return DeserializationError::Ok;
}
DeserializationError parseQuotedString(const char *&result) {
StringBuilder builder = _stringStorage.startString();
const char stopChar = current();
move();
for (;;) {
char c = current();
move();
if (c == stopChar) break;
if (c == '\0') return DeserializationError::IncompleteInput;
if (c == '\\') {
c = current();
if (c == '\0') return DeserializationError::IncompleteInput;
if (c == 'u') {
#if ARDUINOJSON_DECODE_UNICODE
uint16_t codepoint;
move();
DeserializationError err = parseCodepoint(codepoint);
if (err) return err;
Utf8::encodeCodepoint(codepoint, builder);
continue;
#else
return DeserializationError::NotSupported;
#endif
}
c = EscapeSequence::unescapeChar(c);
if (c == '\0') return DeserializationError::InvalidInput;
move();
}
builder.append(c);
}
result = builder.complete();
if (!result) return DeserializationError::NoMemory;
return DeserializationError::Ok;
}
DeserializationError parseNonQuotedString(const char *&result) {
StringBuilder builder = _stringStorage.startString();
char c = current();
if (c == '\0') return DeserializationError::IncompleteInput;
if (canBeInNonQuotedString(c)) { // no quotes
do {
move();
builder.append(c);
c = current();
} while (canBeInNonQuotedString(c));
} else {
return DeserializationError::InvalidInput;
}
result = builder.complete();
if (!result) return DeserializationError::NoMemory;
return DeserializationError::Ok;
}
DeserializationError parseNumericValue(VariantData &result) {
char buffer[64];
uint8_t n = 0;
char c = current();
while (canBeInNonQuotedString(c) && n < 63) {
move();
buffer[n++] = c;
c = current();
}
buffer[n] = 0;
c = buffer[0];
if (c == 't') { // true
result.setBoolean(true);
return n == 4 ? DeserializationError::Ok
: DeserializationError::IncompleteInput;
}
if (c == 'f') { // false
result.setBoolean(false);
return n == 5 ? DeserializationError::Ok
: DeserializationError::IncompleteInput;
}
if (c == 'n') { // null
return n == 4 ? DeserializationError::Ok
: DeserializationError::IncompleteInput;
}
ParsedNumber<Float, UInt> num = parseNumber<Float, UInt>(buffer);
switch (num.type()) {
case VALUE_IS_NEGATIVE_INTEGER:
result.setNegativeInteger(num.uintValue);
return DeserializationError::Ok;
case VALUE_IS_POSITIVE_INTEGER:
result.setPositiveInteger(num.uintValue);
return DeserializationError::Ok;
case VALUE_IS_FLOAT:
result.setFloat(num.floatValue);
return DeserializationError::Ok;
}
return DeserializationError::InvalidInput;
}
DeserializationError parseCodepoint(uint16_t &codepoint) {
codepoint = 0;
for (uint8_t i = 0; i < 4; ++i) {
char digit = current();
if (!digit) return DeserializationError::IncompleteInput;
uint8_t value = decodeHex(digit);
if (value > 0x0F) return DeserializationError::InvalidInput;
codepoint = uint16_t((codepoint << 4) | value);
move();
}
return DeserializationError::Ok;
}
static inline bool isBetween(char c, char min, char max) {
return min <= c && c <= max;
}
static inline bool canBeInNonQuotedString(char c) {
return isBetween(c, '0', '9') || isBetween(c, '_', 'z') ||
isBetween(c, 'A', 'Z') || c == '+' || c == '-' || c == '.';
}
static inline bool isQuote(char c) {
return c == '\'' || c == '\"';
}
static inline uint8_t decodeHex(char c) {
if (c < 'A') return uint8_t(c - '0');
c = char(c & ~0x20); // uppercase
return uint8_t(c - 'A' + 10);
}
DeserializationError skipSpacesAndComments() {
for (;;) {
switch (current()) {
case '\0':
return DeserializationError::IncompleteInput;
case ' ':
case '\t':
case '\r':
case '\n':
move();
continue;
case '/':
move(); // skip '/'
switch (current()) {
case '*': {
move(); // skip '*'
bool wasStar = false;
for (;;) {
char c = current();
if (c == '\0') return DeserializationError::IncompleteInput;
if (c == '/' && wasStar) {
move();
break;
}
wasStar = c == '*';
move();
}
break;
}
case '/':
for (;;) {
move();
char c = current();
if (c == '\0') return DeserializationError::IncompleteInput;
if (c == '\n') break;
}
break;
default:
return DeserializationError::InvalidInput;
}
break;
default:
return DeserializationError::Ok;
}
}
}
MemoryPool *_pool;
TReader _reader;
TStringStorage _stringStorage;
uint8_t _nestingLimit;
char _current;
bool _loaded;
};
template <typename TInput>
DeserializationError deserializeJson(
JsonDocument &doc, const TInput &input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit);
}
template <typename TInput>
DeserializationError deserializeJson(
JsonDocument &doc, TInput *input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit);
}
template <typename TInput>
DeserializationError deserializeJson(
JsonDocument &doc, TInput *input, size_t inputSize,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, inputSize, nestingLimit);
}
template <typename TInput>
DeserializationError deserializeJson(
JsonDocument &doc, TInput &input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class DummyWriter {
public:
size_t write(uint8_t) {
return 1;
}
size_t write(const uint8_t*, size_t n) {
return n;
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <template <typename> class TSerializer, typename TSource>
size_t measure(const TSource &source) {
DummyWriter dp;
TSerializer<DummyWriter> serializer(dp);
source.accept(serializer);
return serializer.bytesWritten();
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
class StaticStringWriter {
public:
StaticStringWriter(char *buf, size_t size) : end(buf + size - 1), p(buf) {
*p = '\0';
}
size_t write(uint8_t c) {
if (p >= end) return 0;
*p++ = static_cast<char>(c);
*p = '\0';
return 1;
}
size_t write(const uint8_t *s, size_t n) {
char *begin = p;
while (p < end && n > 0) {
*p++ = static_cast<char>(*s++);
n--;
}
*p = '\0';
return size_t(p - begin);
}
private:
char *end;
char *p;
};
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_STD_STREAM
#if ARDUINOJSON_ENABLE_STD_STREAM
namespace ARDUINOJSON_NAMESPACE {
class StreamWriter {
public:
explicit StreamWriter(std::ostream& os) : _os(os) {}
size_t write(uint8_t c) {
_os << c;
return 1;
}
size_t write(const uint8_t* s, size_t n) {
_os.write(reinterpret_cast<const char*>(s),
static_cast<std::streamsize>(n));
return n;
}
private:
StreamWriter& operator=(const StreamWriter&);
std::ostream& _os;
};
} // namespace ARDUINOJSON_NAMESPACE
#endif // ARDUINOJSON_ENABLE_STD_STREAM
#endif
namespace ARDUINOJSON_NAMESPACE {
template <template <typename> class TSerializer, typename TSource,
typename TDestination>
size_t doSerialize(const TSource &source, TDestination &destination) {
TSerializer<TDestination> serializer(destination);
source.accept(serializer);
return serializer.bytesWritten();
}
#if ARDUINOJSON_ENABLE_STD_STREAM
template <template <typename> class TSerializer, typename TSource>
size_t serialize(const TSource &source, std::ostream &destination) {
StreamWriter writer(destination);
return doSerialize<TSerializer>(source, writer);
}
#endif
#if ARDUINOJSON_ENABLE_ARDUINO_PRINT
template <template <typename> class TSerializer, typename TSource>
size_t serialize(const TSource &source, Print &destination) {
return doSerialize<TSerializer>(source, destination);
}
#endif
template <template <typename> class TSerializer, typename TSource>
size_t serialize(const TSource &source, char *buffer, size_t bufferSize) {
StaticStringWriter writer(buffer, bufferSize);
return doSerialize<TSerializer>(source, writer);
}
template <template <typename> class TSerializer, typename TSource, size_t N>
size_t serialize(const TSource &source, char (&buffer)[N]) {
StaticStringWriter writer(buffer, N);
return doSerialize<TSerializer>(source, writer);
}
template <template <typename> class TSerializer, typename TSource,
typename TString>
typename enable_if<IsWriteableString<TString>::value, size_t>::type serialize(
const TSource &source, TString &str) {
DynamicStringWriter<TString> writer(str);
return doSerialize<TSerializer>(source, writer);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TFloat>
struct FloatParts {
uint32_t integral;
uint32_t decimal;
int16_t exponent;
int8_t decimalPlaces;
FloatParts(TFloat value) {
uint32_t maxDecimalPart = sizeof(TFloat) >= 8 ? 1000000000 : 1000000;
decimalPlaces = sizeof(TFloat) >= 8 ? 9 : 6;
exponent = normalize(value);
integral = uint32_t(value);
for (uint32_t tmp = integral; tmp >= 10; tmp /= 10) {
maxDecimalPart /= 10;
decimalPlaces--;
}
TFloat remainder = (value - TFloat(integral)) * TFloat(maxDecimalPart);
decimal = uint32_t(remainder);
remainder = remainder - TFloat(decimal);
decimal += uint32_t(remainder * 2);
if (decimal >= maxDecimalPart) {
decimal = 0;
integral++;
if (exponent && integral >= 10) {
exponent++;
integral = 1;
}
}
while (decimal % 10 == 0 && decimalPlaces > 0) {
decimal /= 10;
decimalPlaces--;
}
}
static int16_t normalize(TFloat& value) {
typedef FloatTraits<TFloat> traits;
int16_t powersOf10 = 0;
int8_t index = sizeof(TFloat) == 8 ? 8 : 5;
int bit = 1 << index;
if (value >= ARDUINOJSON_POSITIVE_EXPONENTIATION_THRESHOLD) {
for (; index >= 0; index--) {
if (value >= traits::positiveBinaryPowerOfTen(index)) {
value *= traits::negativeBinaryPowerOfTen(index);
powersOf10 = int16_t(powersOf10 + bit);
}
bit >>= 1;
}
}
if (value > 0 && value <= ARDUINOJSON_NEGATIVE_EXPONENTIATION_THRESHOLD) {
for (; index >= 0; index--) {
if (value < traits::negativeBinaryPowerOfTenPlusOne(index)) {
value *= traits::positiveBinaryPowerOfTen(index);
powersOf10 = int16_t(powersOf10 - bit);
}
bit >>= 1;
}
}
return powersOf10;
}
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TWriter>
class TextFormatter {
public:
explicit TextFormatter(TWriter &writer) : _writer(writer), _length(0) {}
size_t bytesWritten() const {
return _length;
}
void writeBoolean(bool value) {
if (value)
writeRaw("true");
else
writeRaw("false");
}
void writeString(const char *value) {
if (!value) {
writeRaw("null");
} else {
writeRaw('\"');
while (*value) writeChar(*value++);
writeRaw('\"');
}
}
void writeChar(char c) {
char specialChar = EscapeSequence::escapeChar(c);
if (specialChar) {
writeRaw('\\');
writeRaw(specialChar);
} else {
writeRaw(c);
}
}
template <typename T>
void writeFloat(T value) {
if (isnan(value)) return writeRaw(ARDUINOJSON_ENABLE_NAN ? "NaN" : "null");
#if ARDUINOJSON_ENABLE_INFINITY
if (value < 0.0) {
writeRaw('-');
value = -value;
}
if (isinf(value)) return writeRaw("Infinity");
#else
if (isinf(value)) return writeRaw("null");
if (value < 0.0) {
writeRaw('-');
value = -value;
}
#endif
FloatParts<T> parts(value);
writePositiveInteger(parts.integral);
if (parts.decimalPlaces) writeDecimals(parts.decimal, parts.decimalPlaces);
if (parts.exponent < 0) {
writeRaw("e-");
writePositiveInteger(-parts.exponent);
}
if (parts.exponent > 0) {
writeRaw('e');
writePositiveInteger(parts.exponent);
}
}
void writeNegativeInteger(UInt value) {
writeRaw('-');
writePositiveInteger(value);
}
template <typename T>
void writePositiveInteger(T value) {
char buffer[22];
char *end = buffer + sizeof(buffer);
char *begin = end;
do {
*--begin = char(value % 10 + '0');
value = T(value / 10);
} while (value);
writeRaw(begin, end);
}
void writeDecimals(uint32_t value, int8_t width) {
char buffer[16];
char *end = buffer + sizeof(buffer);
char *begin = end;
while (width--) {
*--begin = char(value % 10 + '0');
value /= 10;
}
*--begin = '.';
writeRaw(begin, end);
}
void writeRaw(const char *s) {
_length += _writer.write(reinterpret_cast<const uint8_t *>(s), strlen(s));
}
void writeRaw(const char *s, size_t n) {
_length += _writer.write(reinterpret_cast<const uint8_t *>(s), n);
}
void writeRaw(const char *begin, const char *end) {
_length += _writer.write(reinterpret_cast<const uint8_t *>(begin),
static_cast<size_t>(end - begin));
}
template <size_t N>
void writeRaw(const char (&s)[N]) {
_length += _writer.write(reinterpret_cast<const uint8_t *>(s), N - 1);
}
void writeRaw(char c) {
_length += _writer.write(static_cast<uint8_t>(c));
}
protected:
TWriter &_writer;
size_t _length;
private:
TextFormatter &operator=(const TextFormatter &); // cannot be assigned
};
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TWriter>
class JsonSerializer {
public:
JsonSerializer(TWriter &writer) : _formatter(writer) {}
FORCE_INLINE void visitArray(const CollectionData &array) {
write('[');
VariantSlot *slot = array.head();
while (slot != 0) {
slot->data()->accept(*this);
slot = slot->next();
if (slot == 0) break;
write(',');
}
write(']');
}
void visitObject(const CollectionData &object) {
write('{');
VariantSlot *slot = object.head();
while (slot != 0) {
_formatter.writeString(slot->key());
write(':');
slot->data()->accept(*this);
slot = slot->next();
if (slot == 0) break;
write(',');
}
write('}');
}
void visitFloat(Float value) {
_formatter.writeFloat(value);
}
void visitString(const char *value) {
_formatter.writeString(value);
}
void visitRawJson(const char *data, size_t n) {
_formatter.writeRaw(data, n);
}
void visitNegativeInteger(UInt value) {
_formatter.writeNegativeInteger(value);
}
void visitPositiveInteger(UInt value) {
_formatter.writePositiveInteger(value);
}
void visitBoolean(bool value) {
_formatter.writeBoolean(value);
}
void visitNull() {
_formatter.writeRaw("null");
}
size_t bytesWritten() const {
return _formatter.bytesWritten();
}
protected:
void write(char c) {
_formatter.writeRaw(c);
}
void write(const char *s) {
_formatter.writeRaw(s);
}
private:
TextFormatter<TWriter> _formatter;
};
template <typename TSource, typename TDestination>
size_t serializeJson(const TSource &source, TDestination &destination) {
return serialize<JsonSerializer>(source, destination);
}
template <typename TSource>
size_t serializeJson(const TSource &source, char *buffer, size_t bufferSize) {
return serialize<JsonSerializer>(source, buffer, bufferSize);
}
template <typename TSource>
size_t measureJson(const TSource &source) {
return measure<JsonSerializer>(source);
}
#if ARDUINOJSON_ENABLE_STD_STREAM
template <typename T>
inline typename enable_if<IsVisitable<T>::value, std::ostream &>::type
operator<<(std::ostream &os, const T &source) {
serializeJson(source, os);
return os;
}
#endif
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TWriter>
class PrettyJsonSerializer : public JsonSerializer<TWriter> {
typedef JsonSerializer<TWriter> base;
public:
PrettyJsonSerializer(TWriter &writer) : base(writer), _nesting(0) {}
void visitArray(const CollectionData &array) {
VariantSlot *slot = array.head();
if (!slot) return base::write("[]");
base::write("[\r\n");
_nesting++;
while (slot != 0) {
indent();
slot->data()->accept(*this);
slot = slot->next();
base::write(slot ? ",\r\n" : "\r\n");
}
_nesting--;
indent();
base::write("]");
}
void visitObject(const CollectionData &object) {
VariantSlot *slot = object.head();
if (!slot) return base::write("{}");
base::write("{\r\n");
_nesting++;
while (slot != 0) {
indent();
base::visitString(slot->key());
base::write(": ");
slot->data()->accept(*this);
slot = slot->next();
base::write(slot ? ",\r\n" : "\r\n");
}
_nesting--;
indent();
base::write("}");
}
private:
void indent() {
for (uint8_t i = 0; i < _nesting; i++) base::write(ARDUINOJSON_TAB);
}
uint8_t _nesting;
};
template <typename TSource, typename TDestination>
size_t serializeJsonPretty(const TSource &source, TDestination &destination) {
return serialize<PrettyJsonSerializer>(source, destination);
}
template <typename TSource>
size_t serializeJsonPretty(const TSource &source, char *buffer,
size_t bufferSize) {
return serialize<PrettyJsonSerializer>(source, buffer, bufferSize);
}
template <typename TSource>
size_t measureJsonPretty(const TSource &source) {
return measure<PrettyJsonSerializer>(source);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
inline void swap(T& a, T& b) {
T t(a);
a = b;
b = t;
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
#if ARDUINOJSON_LITTLE_ENDIAN
inline void fixEndianess(uint8_t *p, integral_constant<size_t, 8>) {
swap(p[0], p[7]);
swap(p[1], p[6]);
swap(p[2], p[5]);
swap(p[3], p[4]);
}
inline void fixEndianess(uint8_t *p, integral_constant<size_t, 4>) {
swap(p[0], p[3]);
swap(p[1], p[2]);
}
inline void fixEndianess(uint8_t *p, integral_constant<size_t, 2>) {
swap(p[0], p[1]);
}
inline void fixEndianess(uint8_t *, integral_constant<size_t, 1>) {}
template <typename T>
inline void fixEndianess(T &value) {
fixEndianess(reinterpret_cast<uint8_t *>(&value),
integral_constant<size_t, sizeof(T)>());
}
#else
template <typename T>
inline void fixEndianess(T &) {}
#endif
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
inline void doubleToFloat(const uint8_t d[8], uint8_t f[4]) {
f[0] = uint8_t((d[0] & 0xC0) | (d[0] << 3 & 0x3f) | (d[1] >> 5));
f[1] = uint8_t((d[1] << 3) | (d[2] >> 5));
f[2] = uint8_t((d[2] << 3) | (d[3] >> 5));
f[3] = uint8_t((d[3] << 3) | (d[4] >> 5));
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TReader, typename TStringStorage>
class MsgPackDeserializer {
typedef typename remove_reference<TStringStorage>::type::StringBuilder
StringBuilder;
public:
MsgPackDeserializer(MemoryPool &pool, TReader reader,
TStringStorage stringStorage, uint8_t nestingLimit)
: _pool(&pool),
_reader(reader),
_stringStorage(stringStorage),
_nestingLimit(nestingLimit) {}
DeserializationError parse(VariantData &variant) {
uint8_t code;
if (!readByte(code)) return DeserializationError::IncompleteInput;
if ((code & 0x80) == 0) {
variant.setUnsignedInteger(code);
return DeserializationError::Ok;
}
if ((code & 0xe0) == 0xe0) {
variant.setSignedInteger(static_cast<int8_t>(code));
return DeserializationError::Ok;
}
if ((code & 0xe0) == 0xa0) {
return readString(variant, code & 0x1f);
}
if ((code & 0xf0) == 0x90) {
return readArray(variant.toArray(), code & 0x0F);
}
if ((code & 0xf0) == 0x80) {
return readObject(variant.toObject(), code & 0x0F);
}
switch (code) {
case 0xc0:
return DeserializationError::Ok;
case 0xc2:
variant.setBoolean(false);
return DeserializationError::Ok;
case 0xc3:
variant.setBoolean(true);
return DeserializationError::Ok;
case 0xcc:
return readInteger<uint8_t>(variant);
case 0xcd:
return readInteger<uint16_t>(variant);
case 0xce:
return readInteger<uint32_t>(variant);
case 0xcf:
#if ARDUINOJSON_USE_LONG_LONG
return readInteger<uint64_t>(variant);
#else
return DeserializationError::NotSupported;
#endif
case 0xd0:
return readInteger<int8_t>(variant);
case 0xd1:
return readInteger<int16_t>(variant);
case 0xd2:
return readInteger<int32_t>(variant);
case 0xd3:
#if ARDUINOJSON_USE_LONG_LONG
return readInteger<int64_t>(variant);
#else
return DeserializationError::NotSupported;
#endif
case 0xca:
return readFloat<float>(variant);
case 0xcb:
return readDouble<double>(variant);
case 0xd9:
return readString<uint8_t>(variant);
case 0xda:
return readString<uint16_t>(variant);
case 0xdb:
return readString<uint32_t>(variant);
case 0xdc:
return readArray<uint16_t>(variant.toArray());
case 0xdd:
return readArray<uint32_t>(variant.toArray());
case 0xde:
return readObject<uint16_t>(variant.toObject());
case 0xdf:
return readObject<uint32_t>(variant.toObject());
default:
return DeserializationError::NotSupported;
}
}
private:
MsgPackDeserializer &operator=(const MsgPackDeserializer &);
bool readByte(uint8_t &value) {
int c = _reader.read();
if (c < 0) return false;
value = static_cast<uint8_t>(c);
return true;
}
bool readBytes(uint8_t *p, size_t n) {
for (size_t i = 0; i < n; i++) {
if (!readByte(p[i])) return false;
}
return true;
}
template <typename T>
bool readBytes(T &value) {
return readBytes(reinterpret_cast<uint8_t *>(&value), sizeof(value));
}
template <typename T>
T readInteger() {
T value;
readBytes(value);
fixEndianess(value);
return value;
}
template <typename T>
bool readInteger(T &value) {
if (!readBytes(value)) return false;
fixEndianess(value);
return true;
}
template <typename T>
DeserializationError readInteger(VariantData &variant) {
T value;
if (!readInteger(value)) return DeserializationError::IncompleteInput;
variant.setInteger(value);
return DeserializationError::Ok;
}
template <typename T>
typename enable_if<sizeof(T) == 4, DeserializationError>::type readFloat(
VariantData &variant) {
T value;
if (!readBytes(value)) return DeserializationError::IncompleteInput;
fixEndianess(value);
variant.setFloat(value);
return DeserializationError::Ok;
}
template <typename T>
typename enable_if<sizeof(T) == 8, DeserializationError>::type readDouble(
VariantData &variant) {
T value;
if (!readBytes(value)) return DeserializationError::IncompleteInput;
fixEndianess(value);
variant.setFloat(value);
return DeserializationError::Ok;
}
template <typename T>
typename enable_if<sizeof(T) == 4, DeserializationError>::type readDouble(
VariantData &variant) {
uint8_t i[8]; // input is 8 bytes
T value; // output is 4 bytes
uint8_t *o = reinterpret_cast<uint8_t *>(&value);
if (!readBytes(i, 8)) return DeserializationError::IncompleteInput;
doubleToFloat(i, o);
fixEndianess(value);
variant.setFloat(value);
return DeserializationError::Ok;
}
template <typename T>
DeserializationError readString(VariantData &variant) {
T size;
if (!readInteger(size)) return DeserializationError::IncompleteInput;
return readString(variant, size);
}
template <typename T>
DeserializationError readString(const char *&str) {
T size;
if (!readInteger(size)) return DeserializationError::IncompleteInput;
return readString(str, size);
}
DeserializationError readString(VariantData &variant, size_t n) {
const char *s;
DeserializationError err = readString(s, n);
if (!err) variant.setOwnedString(make_not_null(s));
return err;
}
DeserializationError readString(const char *&result, size_t n) {
StringBuilder builder = _stringStorage.startString();
for (; n; --n) {
uint8_t c;
if (!readBytes(c)) return DeserializationError::IncompleteInput;
builder.append(static_cast<char>(c));
}
result = builder.complete();
if (!result) return DeserializationError::NoMemory;
return DeserializationError::Ok;
}
template <typename TSize>
DeserializationError readArray(CollectionData &array) {
TSize size;
if (!readInteger(size)) return DeserializationError::IncompleteInput;
return readArray(array, size);
}
DeserializationError readArray(CollectionData &array, size_t n) {
if (_nestingLimit == 0) return DeserializationError::TooDeep;
--_nestingLimit;
for (; n; --n) {
VariantData *value = array.add(_pool);
if (!value) return DeserializationError::NoMemory;
DeserializationError err = parse(*value);
if (err) return err;
}
++_nestingLimit;
return DeserializationError::Ok;
}
template <typename TSize>
DeserializationError readObject(CollectionData &object) {
TSize size;
if (!readInteger(size)) return DeserializationError::IncompleteInput;
return readObject(object, size);
}
DeserializationError readObject(CollectionData &object, size_t n) {
if (_nestingLimit == 0) return DeserializationError::TooDeep;
--_nestingLimit;
for (; n; --n) {
VariantSlot *slot = object.addSlot(_pool);
if (!slot) return DeserializationError::NoMemory;
const char *key;
DeserializationError err = parseKey(key);
if (err) return err;
slot->setOwnedKey(make_not_null(key));
err = parse(*slot->data());
if (err) return err;
}
++_nestingLimit;
return DeserializationError::Ok;
}
DeserializationError parseKey(const char *&key) {
uint8_t code;
if (!readByte(code)) return DeserializationError::IncompleteInput;
if ((code & 0xe0) == 0xa0) return readString(key, code & 0x1f);
switch (code) {
case 0xd9:
return readString<uint8_t>(key);
case 0xda:
return readString<uint16_t>(key);
case 0xdb:
return readString<uint32_t>(key);
default:
return DeserializationError::NotSupported;
}
}
MemoryPool *_pool;
TReader _reader;
TStringStorage _stringStorage;
uint8_t _nestingLimit;
};
template <typename TInput>
DeserializationError deserializeMsgPack(
JsonDocument &doc, const TInput &input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit);
}
template <typename TInput>
DeserializationError deserializeMsgPack(
JsonDocument &doc, TInput *input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit);
}
template <typename TInput>
DeserializationError deserializeMsgPack(
JsonDocument &doc, TInput *input, size_t inputSize,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, inputSize, nestingLimit);
}
template <typename TInput>
DeserializationError deserializeMsgPack(
JsonDocument &doc, TInput &input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit);
}
} // namespace ARDUINOJSON_NAMESPACE
namespace ARDUINOJSON_NAMESPACE {
template <typename TWriter>
class MsgPackSerializer {
public:
MsgPackSerializer(TWriter& writer) : _writer(&writer), _bytesWritten(0) {}
template <typename T>
typename enable_if<sizeof(T) == 4>::type visitFloat(T value32) {
writeByte(0xCA);
writeInteger(value32);
}
template <typename T>
ARDUINOJSON_NO_SANITIZE("float-cast-overflow")
typename enable_if<sizeof(T) == 8>::type visitFloat(T value64) {
float value32 = float(value64);
if (value32 == value64) {
writeByte(0xCA);
writeInteger(value32);
} else {
writeByte(0xCB);
writeInteger(value64);
}
}
void visitArray(const CollectionData& array) {
size_t n = array.size();
if (n < 0x10) {
writeByte(uint8_t(0x90 + array.size()));
} else if (n < 0x10000) {
writeByte(0xDC);
writeInteger(uint16_t(n));
} else {
writeByte(0xDD);
writeInteger(uint32_t(n));
}
for (VariantSlot* slot = array.head(); slot; slot = slot->next()) {
slot->data()->accept(*this);
}
}
void visitObject(const CollectionData& object) {
size_t n = object.size();
if (n < 0x10) {
writeByte(uint8_t(0x80 + n));
} else if (n < 0x10000) {
writeByte(0xDE);
writeInteger(uint16_t(n));
} else {
writeByte(0xDF);
writeInteger(uint32_t(n));
}
for (VariantSlot* slot = object.head(); slot; slot = slot->next()) {
visitString(slot->key());
slot->data()->accept(*this);
}
}
void visitString(const char* value) {
if (!value) return writeByte(0xC0); // nil
size_t n = strlen(value);
if (n < 0x20) {
writeByte(uint8_t(0xA0 + n));
} else if (n < 0x100) {
writeByte(0xD9);
writeInteger(uint8_t(n));
} else if (n < 0x10000) {
writeByte(0xDA);
writeInteger(uint16_t(n));
} else {
writeByte(0xDB);
writeInteger(uint32_t(n));
}
writeBytes(reinterpret_cast<const uint8_t*>(value), n);
}
void visitRawJson(const char* data, size_t size) {
writeBytes(reinterpret_cast<const uint8_t*>(data), size);
}
void visitNegativeInteger(UInt value) {
UInt negated = UInt(~value + 1);
if (value <= 0x20) {
writeInteger(int8_t(negated));
} else if (value <= 0x80) {
writeByte(0xD0);
writeInteger(int8_t(negated));
} else if (value <= 0x8000) {
writeByte(0xD1);
writeInteger(int16_t(negated));
} else if (value <= 0x80000000) {
writeByte(0xD2);
writeInteger(int32_t(negated));
}
#if ARDUINOJSON_USE_LONG_LONG
else {
writeByte(0xD3);
writeInteger(int64_t(negated));
}
#endif
}
void visitPositiveInteger(UInt value) {
if (value <= 0x7F) {
writeInteger(uint8_t(value));
} else if (value <= 0xFF) {
writeByte(0xCC);
writeInteger(uint8_t(value));
} else if (value <= 0xFFFF) {
writeByte(0xCD);
writeInteger(uint16_t(value));
} else if (value <= 0xFFFFFFFF) {
writeByte(0xCE);
writeInteger(uint32_t(value));
}
#if ARDUINOJSON_USE_LONG_LONG
else {
writeByte(0xCF);
writeInteger(uint64_t(value));
}
#endif
}
void visitBoolean(bool value) {
writeByte(value ? 0xC3 : 0xC2);
}
void visitNull() {
writeByte(0xC0);
}
size_t bytesWritten() const {
return _bytesWritten;
}
private:
void writeByte(uint8_t c) {
_bytesWritten += _writer->write(c);
}
void writeBytes(const uint8_t* p, size_t n) {
_bytesWritten += _writer->write(p, n);
}
template <typename T>
void writeInteger(T value) {
fixEndianess(value);
writeBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value));
}
TWriter* _writer;
size_t _bytesWritten;
};
template <typename TSource, typename TDestination>
inline size_t serializeMsgPack(const TSource& source, TDestination& output) {
return serialize<MsgPackSerializer>(source, output);
}
template <typename TSource, typename TDestination>
inline size_t serializeMsgPack(const TSource& source, TDestination* output,
size_t size) {
return serialize<MsgPackSerializer>(source, output, size);
}
template <typename TSource>
inline size_t measureMsgPack(const TSource& source) {
return measure<MsgPackSerializer>(source);
}
} // namespace ARDUINOJSON_NAMESPACE
#ifdef __GNUC__
#define ARDUINOJSON_PRAGMA(x) _Pragma(#x)
#define ARDUINOJSON_COMPILE_ERROR(msg) ARDUINOJSON_PRAGMA(GCC error msg)
#define ARDUINOJSON_STRINGIFY(S) #S
#define ARDUINOJSON_DEPRECATION_ERROR(X, Y) \
ARDUINOJSON_COMPILE_ERROR(ARDUINOJSON_STRINGIFY(X is a Y from ArduinoJson 5. Please see arduinojson.org/upgrade to learn how to upgrade your program to ArduinoJson version 6))
#define StaticJsonBuffer ARDUINOJSON_DEPRECATION_ERROR(StaticJsonBuffer, class)
#define DynamicJsonBuffer ARDUINOJSON_DEPRECATION_ERROR(DynamicJsonBuffer, class)
#define JsonBuffer ARDUINOJSON_DEPRECATION_ERROR(JsonBuffer, class)
#define RawJson ARDUINOJSON_DEPRECATION_ERROR(RawJson, function)
#endif
namespace ArduinoJson {
typedef ARDUINOJSON_NAMESPACE::ArrayConstRef JsonArrayConst;
typedef ARDUINOJSON_NAMESPACE::ArrayRef JsonArray;
typedef ARDUINOJSON_NAMESPACE::Float JsonFloat;
typedef ARDUINOJSON_NAMESPACE::Integer JsonInteger;
typedef ARDUINOJSON_NAMESPACE::ObjectConstRef JsonObjectConst;
typedef ARDUINOJSON_NAMESPACE::ObjectRef JsonObject;
typedef ARDUINOJSON_NAMESPACE::Pair JsonPair;
typedef ARDUINOJSON_NAMESPACE::String JsonString;
typedef ARDUINOJSON_NAMESPACE::UInt JsonUInt;
typedef ARDUINOJSON_NAMESPACE::VariantConstRef JsonVariantConst;
typedef ARDUINOJSON_NAMESPACE::VariantRef JsonVariant;
using ARDUINOJSON_NAMESPACE::BasicJsonDocument;
using ARDUINOJSON_NAMESPACE::copyArray;
using ARDUINOJSON_NAMESPACE::DeserializationError;
using ARDUINOJSON_NAMESPACE::deserializeJson;
using ARDUINOJSON_NAMESPACE::deserializeMsgPack;
using ARDUINOJSON_NAMESPACE::DynamicJsonDocument;
using ARDUINOJSON_NAMESPACE::JsonDocument;
using ARDUINOJSON_NAMESPACE::serialized;
using ARDUINOJSON_NAMESPACE::serializeJson;
using ARDUINOJSON_NAMESPACE::serializeJsonPretty;
using ARDUINOJSON_NAMESPACE::serializeMsgPack;
using ARDUINOJSON_NAMESPACE::StaticJsonDocument;
namespace DeserializationOption {
using ARDUINOJSON_NAMESPACE::NestingLimit;
}
} // namespace ArduinoJson
using namespace ArduinoJson;
#else
#error ArduinoJson requires a C++ compiler, please change file extension to .cc or .cpp
#endif