Updated usermod readme and usability enhancements.

This commit is contained in:
Blaž Kristan 2021-05-17 12:52:27 +02:00
parent e0f17e1778
commit 12f9ad8f7f
10 changed files with 626 additions and 620 deletions

View File

@ -10,465 +10,510 @@
#pragma once #pragma once
#include "wled.h" #include "wled.h"
#define USERMOD_ID_ANIMATED_STAIRCASE 1011
class Animated_Staircase : public Usermod { class Animated_Staircase : public Usermod {
private: private:
/* configuration (available in API and stored in flash) */ /* configuration (available in API and stored in flash) */
bool enabled = false; // Enable this usermod bool enabled = false; // Enable this usermod
unsigned long segment_delay_ms = 150; // Time between switching each segment unsigned long segment_delay_ms = 150; // Time between switching each segment
unsigned long on_time_ms = 5 * 1000; // The time for the light to stay on unsigned long on_time_ms = 30000; // The time for the light to stay on
int8_t topPIRorTriggerPin = -1; // disabled int8_t topPIRorTriggerPin = -1; // disabled
int8_t bottomPIRorTriggerPin = -1; // disabled int8_t bottomPIRorTriggerPin = -1; // disabled
int8_t topEchoPin = -1; // disabled int8_t topEchoPin = -1; // disabled
int8_t bottomEchoPin = -1; // disabled int8_t bottomEchoPin = -1; // disabled
bool useUSSensorTop = false; // using PIR or UltraSound sensor? bool useUSSensorTop = false; // using PIR or UltraSound sensor?
bool useUSSensorBottom = false; // using PIR or UltraSound sensor? bool useUSSensorBottom = false; // using PIR or UltraSound sensor?
unsigned int topMaxTimeUs = 1749; // default echo timout, top unsigned int topMaxDist = 50; // default maximum measured distance in cm, top
unsigned int bottomMaxTimeUs = 1749; // default echo timout, bottom unsigned int bottomMaxDist = 50; // default maximum measured distance in cm, bottom
/* runtime variables */ /* runtime variables */
bool initDone = false; bool initDone = false;
// Time between checking of the sensors // Time between checking of the sensors
const unsigned int scanDelay = 50; const unsigned int scanDelay = 100;
// Lights on or off. // Lights on or off.
// Flipping this will start a transition. // Flipping this will start a transition.
bool on = false; bool on = false;
// Swipe direction for current transition // Swipe direction for current transition
#define SWIPE_UP true #define SWIPE_UP true
#define SWIPE_DOWN false #define SWIPE_DOWN false
bool swipe = SWIPE_UP; bool swipe = SWIPE_UP;
// Indicates which Sensor was seen last (to determine // Indicates which Sensor was seen last (to determine
// the direction when swiping off) // the direction when swiping off)
#define LOWER false #define LOWER false
#define UPPER true #define UPPER true
bool lastSensor = LOWER; bool lastSensor = LOWER;
// Time of the last transition action // Time of the last transition action
unsigned long lastTime = 0; unsigned long lastTime = 0;
// Time of the last sensor check // Time of the last sensor check
unsigned long lastScanTime = 0; unsigned long lastScanTime = 0;
// Last time the lights were switched on or off // Last time the lights were switched on or off
unsigned long lastSwitchTime = 0; unsigned long lastSwitchTime = 0;
// segment id between onIndex and offIndex are on. // segment id between onIndex and offIndex are on.
// controll the swipe by setting/moving these indices around. // controll the swipe by setting/moving these indices around.
// onIndex must be less than or equal to offIndex // onIndex must be less than or equal to offIndex
byte onIndex = 0; byte onIndex = 0;
byte offIndex = 0; byte offIndex = 0;
// The maximum number of configured segments. // The maximum number of configured segments.
// Dynamically updated based on user configuration. // Dynamically updated based on user configuration.
byte maxSegmentId = 1; byte maxSegmentId = 1;
byte mainSegmentId = 0; byte mainSegmentId = 0;
// These values are used by the API to read the // These values are used by the API to read the
// last sensor state, or trigger a sensor // last sensor state, or trigger a sensor
// through the API // through the API
bool topSensorRead = false; bool topSensorRead = false;
bool topSensorWrite = false; bool topSensorWrite = false;
bool bottomSensorRead = false; bool bottomSensorRead = false;
bool bottomSensorWrite = false; bool bottomSensorWrite = false;
bool topSensorState = false;
bool bottomSensorState = false;
// strings to reduce flash memory usage (used more than twice) // strings to reduce flash memory usage (used more than twice)
static const char _name[]; static const char _name[];
static const char _enabled[]; static const char _enabled[];
static const char _segmentDelay[]; static const char _segmentDelay[];
static const char _onTime[]; static const char _onTime[];
static const char _useTopUltrasoundSensor[]; static const char _useTopUltrasoundSensor[];
static const char _topPIRorTrigger_pin[]; static const char _topPIRorTrigger_pin[];
static const char _topEcho_pin[]; static const char _topEcho_pin[];
static const char _useBottomUltrasoundSensor[]; static const char _useBottomUltrasoundSensor[];
static const char _bottomPIRorTrigger_pin[]; static const char _bottomPIRorTrigger_pin[];
static const char _bottomEcho_pin[]; static const char _bottomEcho_pin[];
static const char _topEchoTime[]; static const char _topEchoCm[];
static const char _bottomEchoTime[]; static const char _bottomEchoCm[];
static const char _[];
void publishMqtt(bool bottom, const char* state)
void updateSegments() { {
// mainSegmentId = strip.getMainSegmentId(); //Check if MQTT Connected, otherwise it will crash the 8266
// WS2812FX::Segment mainsegment = strip.getSegment(mainSegmentId); if (WLED_MQTT_CONNECTED){
WS2812FX::Segment* segments = strip.getSegments(); char subuf[64];
for (int i = 0; i < MAX_NUM_SEGMENTS; i++, segments++) { sprintf_P(subuf, PSTR("%s/motion/%d"), mqttDeviceTopic, (int)bottom);
if (!segments->isActive()) { mqtt->publish(subuf, 0, false, state);
maxSegmentId = i - 1;
break;
}
if (i >= onIndex && i < offIndex) {
segments->setOption(SEG_OPTION_ON, 1, 1);
// We may need to copy mode and colors from segment 0 to make sure
// changes are propagated even when the config is changed during a wipe
// segments->mode = mainsegment.mode;
// segments->colors[0] = mainsegment.colors[0];
} else {
segments->setOption(SEG_OPTION_ON, 0, 1);
}
// Always mark segments as "transitional", we are animating the staircase
segments->setOption(SEG_OPTION_TRANSITIONAL, 1, 1);
}
colorUpdated(NOTIFIER_CALL_MODE_DIRECT_CHANGE);
}
/*
* Detects if an object is within ultrasound range.
* signalPin: The pin where the pulse is sent
* echoPin: The pin where the echo is received
* maxTimeUs: Detection timeout in microseconds. If an echo is
* received within this time, an object is detected
* and the function will return true.
*
* The speed of sound is 343 meters per second at 20 degress Celcius.
* Since the sound has to travel back and forth, the detection
* distance for the sensor in cm is (0.0343 * maxTimeUs) / 2.
*
* For practical reasons, here are some useful distances:
*
* Distance = maxtime
* 5 cm = 292 uS
* 10 cm = 583 uS
* 20 cm = 1166 uS
* 30 cm = 1749 uS
* 50 cm = 2915 uS
* 100 cm = 5831 uS
*/
bool ultrasoundRead(uint8_t signalPin,
uint8_t echoPin,
unsigned int maxTimeUs) {
digitalWrite(signalPin, HIGH);
delayMicroseconds(10);
digitalWrite(signalPin, LOW);
return pulseIn(echoPin, HIGH, maxTimeUs) > 0;
}
void checkSensors() {
if ((millis() - lastScanTime) > scanDelay) {
lastScanTime = millis();
if (!useUSSensorBottom)
bottomSensorRead = bottomSensorWrite || (digitalRead(bottomPIRorTriggerPin) == HIGH);
else
bottomSensorRead = bottomSensorWrite || ultrasoundRead(bottomPIRorTriggerPin, bottomEchoPin, bottomMaxTimeUs);
if (!useUSSensorTop)
topSensorRead = topSensorWrite || (digitalRead(topPIRorTriggerPin) == HIGH);
else
topSensorRead = topSensorWrite || ultrasoundRead(topPIRorTriggerPin, topEchoPin, topMaxTimeUs);
// Values read, reset the flags for next API call
topSensorWrite = false;
bottomSensorWrite = false;
if (topSensorRead != bottomSensorRead) {
lastSwitchTime = millis();
if (on) {
lastSensor = topSensorRead;
} else {
// If the bottom sensor triggered, we need to swipe up, ON
swipe = bottomSensorRead;
if (swipe) {
DEBUG_PRINTLN(F("ON -> Swipe up."));
} else {
DEBUG_PRINTLN(F("ON -> Swipe down."));
}
if (onIndex == offIndex) {
// Position the indices for a correct on-swipe
if (swipe == SWIPE_UP) {
onIndex = mainSegmentId;
} else {
onIndex = maxSegmentId+1;
}
offIndex = onIndex;
}
on = true;
}
} }
} }
}
void autoPowerOff() { void updateSegments() {
// TODO: add logic to wait until PIR sensor deactivates mainSegmentId = strip.getMainSegmentId();
if (on && ((millis() - lastSwitchTime) > on_time_ms)) {
// Swipe OFF in the direction of the last sensor detection
swipe = lastSensor;
on = false;
if (swipe) {
DEBUG_PRINTLN(F("OFF -> Swipe up."));
} else {
DEBUG_PRINTLN(F("OFF -> Swipe down."));
}
}
}
void updateSwipe() {
if ((millis() - lastTime) > segment_delay_ms) {
lastTime = millis();
// byte oldOnIndex = onIndex;
// byte oldOffIndex = offIndex;
if (on) {
// Turn on all segments
onIndex = MAX(mainSegmentId, onIndex - 1);
offIndex = MIN(maxSegmentId + 1, offIndex + 1);
} else {
if (swipe == SWIPE_UP) {
onIndex = MIN(offIndex, onIndex + 1);
} else {
offIndex = MAX(onIndex, offIndex - 1);
}
}
updateSegments();
}
}
// send sesnor values to JSON API
void writeSensorsToJson(JsonObject& staircase) {
staircase[F("top-sensor")] = topSensorRead;
staircase[F("bottom-sensor")] = bottomSensorRead;
}
// allow overrides from JSON API
void readSensorsFromJson(JsonObject& staircase) {
bottomSensorWrite = bottomSensorRead || (staircase[F("bottom-sensor")].as<bool>());
topSensorWrite = topSensorRead || (staircase[F("top-sensor")].as<bool>());
}
void enable(bool enable) {
if (enable) {
DEBUG_PRINTLN(F("Animated Staircase enabled."));
DEBUG_PRINT(F("Delay between steps: "));
DEBUG_PRINT(segment_delay_ms);
DEBUG_PRINT(F(" milliseconds.\nStairs switch off after: "));
DEBUG_PRINT(on_time_ms / 1000);
DEBUG_PRINTLN(F(" seconds."));
// TODO: attach interrupts
if (!useUSSensorBottom)
pinMode(bottomPIRorTriggerPin, INPUT);
else {
pinMode(bottomPIRorTriggerPin, OUTPUT);
pinMode(bottomEchoPin, INPUT);
}
if (!useUSSensorTop)
pinMode(topPIRorTriggerPin, INPUT);
else {
pinMode(topPIRorTriggerPin, OUTPUT);
pinMode(topEchoPin, INPUT);
}
} else {
// Restore segment options
// WS2812FX::Segment mainsegment = strip.getSegment(mainSegmentId);
WS2812FX::Segment* segments = strip.getSegments(); WS2812FX::Segment* segments = strip.getSegments();
for (int i = 0; i < MAX_NUM_SEGMENTS; i++, segments++) { for (int i = 0; i < MAX_NUM_SEGMENTS; i++, segments++) {
if (!segments->isActive()) { if (!segments->isActive()) {
maxSegmentId = i - 1; maxSegmentId = i - 1;
break; break;
} }
segments->setOption(SEG_OPTION_ON, 1, 1);
if (i >= onIndex && i < offIndex) {
segments->setOption(SEG_OPTION_ON, 1, 1);
// We may need to copy mode and colors from segment 0 to make sure
// changes are propagated even when the config is changed during a wipe
// segments->mode = mainsegment.mode;
// segments->colors[0] = mainsegment.colors[0];
} else {
segments->setOption(SEG_OPTION_ON, 0, 1);
}
// Always mark segments as "transitional", we are animating the staircase
segments->setOption(SEG_OPTION_TRANSITIONAL, 1, 1);
} }
colorUpdated(NOTIFIER_CALL_MODE_DIRECT_CHANGE); colorUpdated(NOTIFIER_CALL_MODE_DIRECT_CHANGE);
DEBUG_PRINTLN(F("Animated Staircase disabled."));
} }
enabled = enable;
}
public: /*
void setup() { * Detects if an object is within ultrasound range.
// allocate pins * signalPin: The pin where the pulse is sent
if (topPIRorTriggerPin >= 0) { * echoPin: The pin where the echo is received
if (!pinManager.allocatePin(topPIRorTriggerPin,useUSSensorTop)) * maxTimeUs: Detection timeout in microseconds. If an echo is
topPIRorTriggerPin = -1; * received within this time, an object is detected
* and the function will return true.
*
* The speed of sound is 343 meters per second at 20 degress Celcius.
* Since the sound has to travel back and forth, the detection
* distance for the sensor in cm is (0.0343 * maxTimeUs) / 2.
*
* For practical reasons, here are some useful distances:
*
* Distance = maxtime
* 5 cm = 292 uS
* 10 cm = 583 uS
* 20 cm = 1166 uS
* 30 cm = 1749 uS
* 50 cm = 2915 uS
* 100 cm = 5831 uS
*/
bool ultrasoundRead(int8_t signalPin, int8_t echoPin, unsigned int maxTimeUs) {
if (signalPin<0 || echoPin<0) return false;
digitalWrite(signalPin, LOW);
delayMicroseconds(2);
digitalWrite(signalPin, HIGH);
delayMicroseconds(10);
digitalWrite(signalPin, LOW);
return pulseIn(echoPin, HIGH, maxTimeUs) > 0;
} }
if (topEchoPin >= 0) {
if (!pinManager.allocatePin(topEchoPin,false)) bool checkSensors() {
topEchoPin = -1; bool sensorChanged = false;
if ((millis() - lastScanTime) > scanDelay) {
lastScanTime = millis();
bottomSensorRead = bottomSensorWrite ||
(!useUSSensorBottom ?
(bottomPIRorTriggerPin<0 ? false : digitalRead(bottomPIRorTriggerPin)) :
ultrasoundRead(bottomPIRorTriggerPin, bottomEchoPin, bottomMaxDist*59) // cm to us
);
topSensorRead = topSensorWrite ||
(!useUSSensorTop ?
(topPIRorTriggerPin<0 ? false : digitalRead(topPIRorTriggerPin)) :
ultrasoundRead(topPIRorTriggerPin, topEchoPin, topMaxDist*59) // cm to us
);
if (bottomSensorRead != bottomSensorState) {
bottomSensorState = bottomSensorRead; // change previous state
sensorChanged = true;
publishMqtt(true, bottomSensorState ? "on" : "off");
DEBUG_PRINTLN(F("Bottom sensor changed."));
}
if (topSensorRead != topSensorState) {
topSensorState = topSensorRead; // change previous state
sensorChanged = true;
publishMqtt(false, topSensorState ? "on" : "off");
DEBUG_PRINTLN(F("Top sensor changed."));
}
// Values read, reset the flags for next API call
topSensorWrite = false;
bottomSensorWrite = false;
if (topSensorRead != bottomSensorRead) {
lastSwitchTime = millis();
if (on) {
lastSensor = topSensorRead;
} else {
// If the bottom sensor triggered, we need to swipe up, ON
swipe = bottomSensorRead;
DEBUG_PRINT(F("ON -> Swipe "));
DEBUG_PRINTLN(swipe ? F("up.") : F("down."));
if (onIndex == offIndex) {
// Position the indices for a correct on-swipe
if (swipe == SWIPE_UP) {
onIndex = mainSegmentId;
} else {
onIndex = maxSegmentId+1;
}
offIndex = onIndex;
}
on = true;
}
}
}
return sensorChanged;
} }
if (bottomPIRorTriggerPin >= 0) {
if (!pinManager.allocatePin(bottomPIRorTriggerPin,useUSSensorBottom)) void autoPowerOff() {
bottomPIRorTriggerPin = -1; if (on && ((millis() - lastSwitchTime) > on_time_ms)) {
// if sensors are still on, do nothing
if (bottomSensorState || topSensorState) return;
// Swipe OFF in the direction of the last sensor detection
swipe = lastSensor;
on = false;
DEBUG_PRINT(F("OFF -> Swipe "));
DEBUG_PRINTLN(swipe ? F("up.") : F("down."));
}
} }
if (bottomEchoPin >= 0) {
if (!pinManager.allocatePin(bottomPIRorTriggerPin,false)) void updateSwipe() {
bottomEchoPin = -1; if ((millis() - lastTime) > segment_delay_ms) {
lastTime = millis();
if (on) {
// Turn on all segments
onIndex = MAX(mainSegmentId, onIndex - 1);
offIndex = MIN(maxSegmentId + 1, offIndex + 1);
} else {
if (swipe == SWIPE_UP) {
onIndex = MIN(offIndex, onIndex + 1);
} else {
offIndex = MAX(onIndex, offIndex - 1);
}
}
updateSegments();
}
} }
// TODO: attach interrupts in enable()
// validate pins // send sesnor values to JSON API
if ( topPIRorTriggerPin < 0 || bottomPIRorTriggerPin < 0 || void writeSensorsToJson(JsonObject& staircase) {
(useUSSensorTop && topEchoPin < 0) || (useUSSensorBottom && bottomEchoPin < 0) ) staircase[F("top-sensor")] = topSensorRead;
enabled = false; staircase[F("bottom-sensor")] = bottomSensorRead;
enable(enabled);
initDone = true;
}
void loop() {
if (!enabled) return;
checkSensors();
autoPowerOff();
updateSwipe();
}
uint16_t getId() { return USERMOD_ID_ANIMATED_STAIRCASE; }
void addToJsonState(JsonObject& root) {
JsonObject staircase = root[FPSTR(_name)];
if (staircase.isNull()) {
staircase = root.createNestedObject(FPSTR(_name));
} }
writeSensorsToJson(staircase);
DEBUG_PRINTLN(F("Staircase sensor state exposed in API."));
}
/* // allow overrides from JSON API
* Reads configuration settings from the json API. void readSensorsFromJson(JsonObject& staircase) {
* See void addToJsonState(JsonObject& root) bottomSensorWrite = bottomSensorState || (staircase[F("bottom-sensor")].as<bool>());
*/ topSensorWrite = topSensorState || (staircase[F("top-sensor")].as<bool>());
void readFromJsonState(JsonObject& root) { }
if (!initDone) return; // prevent crash on boot applyPreset()
JsonObject staircase = root[FPSTR(_name)]; void enable(bool enable) {
if (!staircase.isNull()) { if (enable) {
if (staircase[FPSTR(_enabled)].is<bool>()) { DEBUG_PRINTLN(F("Animated Staircase enabled."));
enabled = staircase[FPSTR(_enabled)].as<bool>(); DEBUG_PRINT(F("Delay between steps: "));
DEBUG_PRINT(segment_delay_ms);
DEBUG_PRINT(F(" milliseconds.\nStairs switch off after: "));
DEBUG_PRINT(on_time_ms / 1000);
DEBUG_PRINTLN(F(" seconds."));
if (!useUSSensorBottom)
pinMode(bottomPIRorTriggerPin, INPUT_PULLUP);
else {
pinMode(bottomPIRorTriggerPin, OUTPUT);
pinMode(bottomEchoPin, INPUT);
}
if (!useUSSensorTop)
pinMode(topPIRorTriggerPin, INPUT_PULLUP);
else {
pinMode(topPIRorTriggerPin, OUTPUT);
pinMode(topEchoPin, INPUT);
}
} else { } else {
String str = staircase[FPSTR(_enabled)]; // checkbox -> off or on // Restore segment options
enabled = (bool)(str!="off"); // off is guaranteed to be present WS2812FX::Segment* segments = strip.getSegments();
for (int i = 0; i < MAX_NUM_SEGMENTS; i++, segments++) {
if (!segments->isActive()) {
maxSegmentId = i - 1;
break;
}
segments->setOption(SEG_OPTION_ON, 1, 1);
}
colorUpdated(NOTIFIER_CALL_MODE_DIRECT_CHANGE);
DEBUG_PRINTLN(F("Animated Staircase disabled."));
} }
readSensorsFromJson(root); enabled = enable;
DEBUG_PRINTLN(F("Staircase sensor state read from API."));
} }
}
/* public:
* Writes the configuration to internal flash memory. void setup() {
*/ // allocate pins
void addToConfig(JsonObject& root) { if (topPIRorTriggerPin >= 0) {
JsonObject staircase = root[FPSTR(_name)]; if (!pinManager.allocatePin(topPIRorTriggerPin,useUSSensorTop))
if (staircase.isNull()) { topPIRorTriggerPin = -1;
staircase = root.createNestedObject(FPSTR(_name)); }
if (topEchoPin >= 0) {
if (!pinManager.allocatePin(topEchoPin,false))
topEchoPin = -1;
}
if (bottomPIRorTriggerPin >= 0) {
if (!pinManager.allocatePin(bottomPIRorTriggerPin,useUSSensorBottom))
bottomPIRorTriggerPin = -1;
}
if (bottomEchoPin >= 0) {
if (!pinManager.allocatePin(bottomEchoPin,false))
bottomEchoPin = -1;
}
enable(enabled);
initDone = true;
} }
staircase[FPSTR(_enabled)] = enabled;
staircase[FPSTR(_segmentDelay)] = segment_delay_ms;
staircase[FPSTR(_onTime)] = on_time_ms / 1000;
staircase[FPSTR(_useTopUltrasoundSensor)] = useUSSensorTop;
staircase[FPSTR(_topPIRorTrigger_pin)] = topPIRorTriggerPin;
staircase[FPSTR(_topEcho_pin)] = useUSSensorTop ? topEchoPin : -1;
staircase[FPSTR(_useBottomUltrasoundSensor)] = useUSSensorBottom;
staircase[FPSTR(_bottomPIRorTrigger_pin)] = bottomPIRorTriggerPin;
staircase[FPSTR(_bottomEcho_pin)] = useUSSensorBottom ? bottomEchoPin : -1;
staircase[FPSTR(_topEchoTime)] = topMaxTimeUs;
staircase[FPSTR(_bottomEchoTime)] = bottomMaxTimeUs;
DEBUG_PRINTLN(F("Staircase config saved."));
}
/* void loop() {
* Reads the configuration to internal flash memory before setup() is called. if (!enabled || strip.isUpdating()) return;
*/ checkSensors();
void readFromConfig(JsonObject& root) { autoPowerOff();
bool oldUseUSSensorTop = useUSSensorTop; updateSwipe();
bool oldUseUSSensorBottom = useUSSensorBottom; }
int8_t oldTopAPin = topPIRorTriggerPin;
int8_t oldTopBPin = topEchoPin;
int8_t oldBottomAPin = bottomPIRorTriggerPin;
int8_t oldBottomBPin = bottomEchoPin;
JsonObject staircase = root[FPSTR(_name)]; uint16_t getId() { return USERMOD_ID_ANIMATED_STAIRCASE; }
if (!staircase.isNull()) {
if (staircase[FPSTR(_enabled)].is<bool>()) { /**
enabled = staircase[FPSTR(_enabled)].as<bool>(); * handling of MQTT message
* topic only contains stripped topic (part after /wled/MAC)
* topic should look like: /swipe with amessage of [up|down]
*/
bool onMqttMessage(char* topic, char* payload) {
if (strlen(topic) == 6 && strncmp_P(topic, PSTR("/swipe"), 6) == 0) {
String action = payload;
if (action == "up") {
bottomSensorWrite = true;
return true;
} else if (action == "down") {
topSensorWrite = true;
return true;
} else if (action == "on") {
enable(true);
return true;
} else if (action == "off") {
enable(false);
return true;
}
}
return false;
}
/**
* subscribe to MQTT topic for controlling usermod
*/
void onMqttConnect(bool sessionPresent) {
//(re)subscribe to required topics
char subuf[64];
if (mqttDeviceTopic[0] != 0) {
strcpy(subuf, mqttDeviceTopic);
strcat_P(subuf, PSTR("/swipe"));
mqtt->subscribe(subuf, 0);
}
}
void addToJsonState(JsonObject& root) {
JsonObject staircase = root[FPSTR(_name)];
if (staircase.isNull()) {
staircase = root.createNestedObject(FPSTR(_name));
}
writeSensorsToJson(staircase);
DEBUG_PRINTLN(F("Staircase sensor state exposed in API."));
}
/*
* Reads configuration settings from the json API.
* See void addToJsonState(JsonObject& root)
*/
void readFromJsonState(JsonObject& root) {
if (!initDone) return; // prevent crash on boot applyPreset()
JsonObject staircase = root[FPSTR(_name)];
if (!staircase.isNull()) {
if (staircase[FPSTR(_enabled)].is<bool>()) {
enabled = staircase[FPSTR(_enabled)].as<bool>();
} else {
String str = staircase[FPSTR(_enabled)]; // checkbox -> off or on
enabled = (bool)(str!="off"); // off is guaranteed to be present
}
readSensorsFromJson(staircase);
DEBUG_PRINTLN(F("Staircase sensor state read from API."));
}
}
/*
* Writes the configuration to internal flash memory.
*/
void addToConfig(JsonObject& root) {
JsonObject staircase = root[FPSTR(_name)];
if (staircase.isNull()) {
staircase = root.createNestedObject(FPSTR(_name));
}
staircase[FPSTR(_enabled)] = enabled;
staircase[FPSTR(_segmentDelay)] = segment_delay_ms;
staircase[FPSTR(_onTime)] = on_time_ms / 1000;
staircase[FPSTR(_useTopUltrasoundSensor)] = useUSSensorTop;
staircase[FPSTR(_topPIRorTrigger_pin)] = topPIRorTriggerPin;
staircase[FPSTR(_topEcho_pin)] = useUSSensorTop ? topEchoPin : -1;
staircase[FPSTR(_useBottomUltrasoundSensor)] = useUSSensorBottom;
staircase[FPSTR(_bottomPIRorTrigger_pin)] = bottomPIRorTriggerPin;
staircase[FPSTR(_bottomEcho_pin)] = useUSSensorBottom ? bottomEchoPin : -1;
staircase[FPSTR(_topEchoCm)] = topMaxDist;
staircase[FPSTR(_bottomEchoCm)] = bottomMaxDist;
DEBUG_PRINTLN(F("Staircase config saved."));
}
/*
* Reads the configuration to internal flash memory before setup() is called.
*/
void readFromConfig(JsonObject& root) {
bool oldUseUSSensorTop = useUSSensorTop;
bool oldUseUSSensorBottom = useUSSensorBottom;
int8_t oldTopAPin = topPIRorTriggerPin;
int8_t oldTopBPin = topEchoPin;
int8_t oldBottomAPin = bottomPIRorTriggerPin;
int8_t oldBottomBPin = bottomEchoPin;
JsonObject staircase = root[FPSTR(_name)];
if (!staircase.isNull()) {
if (staircase[FPSTR(_enabled)].is<bool>()) {
enabled = staircase[FPSTR(_enabled)].as<bool>();
} else {
String str = staircase[FPSTR(_enabled)]; // checkbox -> off or on
enabled = (bool)(str!="off"); // off is guaranteed to be present
}
segment_delay_ms = min(10000,max(10,staircase[FPSTR(_segmentDelay)].as<int>())); // max delay 10s
on_time_ms = min(900,max(10,staircase[FPSTR(_onTime)].as<int>())) * 1000; // min 10s, max 15min
if (staircase[FPSTR(_useTopUltrasoundSensor)].is<bool>()) {
useUSSensorTop = staircase[FPSTR(_useTopUltrasoundSensor)].as<bool>();
} else {
String str = staircase[FPSTR(_useTopUltrasoundSensor)]; // checkbox -> off or on
useUSSensorTop = (bool)(str!="off"); // off is guaranteed to be present
}
topPIRorTriggerPin = min(39,max(-1,staircase[FPSTR(_topPIRorTrigger_pin)].as<int>()));
topEchoPin = min(39,max(-1,staircase[FPSTR(_topEcho_pin)].as<int>()));
if (staircase[FPSTR(_useBottomUltrasoundSensor)].is<bool>()) {
useUSSensorBottom = staircase[FPSTR(_useBottomUltrasoundSensor)].as<bool>();
} else {
String str = staircase[FPSTR(_useBottomUltrasoundSensor)]; // checkbox -> off or on
useUSSensorBottom = (bool)(str!="off"); // off is guaranteed to be present
}
bottomPIRorTriggerPin = min(39,max(-1,staircase[FPSTR(_bottomPIRorTrigger_pin)].as<int>()));
bottomEchoPin = min(39,max(-1,staircase[FPSTR(_bottomEcho_pin)].as<int>()));
topMaxDist = min(150,max(30,staircase[FPSTR(_topEchoCm)].as<int>())); // max distnace ~1.5m (a lag of 9ms may be expected)
bottomMaxDist = min(150,max(30,staircase[FPSTR(_bottomEchoCm)].as<int>())); // max distance ~1.5m (a lag of 9ms may be expected)
} else { } else {
String str = staircase[FPSTR(_enabled)]; // checkbox -> off or on DEBUG_PRINTLN(F("No config found. (Using defaults.)"));
enabled = (bool)(str!="off"); // off is guaranteed to be present
} }
segment_delay_ms = min(10000,max(10,staircase[FPSTR(_segmentDelay)].as<int>())); // max delay 10s if (!initDone) {
on_time_ms = min(900,max(10,staircase[FPSTR(_onTime)].as<int>())) * 1000; // min 10s, max 15min // first run: reading from cfg.json
DEBUG_PRINTLN(F("Staircase config loaded."));
if (staircase[FPSTR(_useTopUltrasoundSensor)].is<bool>()) {
useUSSensorTop = staircase[FPSTR(_useTopUltrasoundSensor)].as<bool>();
} else { } else {
String str = staircase[FPSTR(_useTopUltrasoundSensor)]; // checkbox -> off or on // changing paramters from settings page
useUSSensorTop = (bool)(str!="off"); // off is guaranteed to be present DEBUG_PRINTLN(F("Staircase config (re)loaded."));
bool changed = false;
if ((oldUseUSSensorTop != useUSSensorTop) ||
(oldUseUSSensorBottom != useUSSensorBottom) ||
(oldTopAPin != topPIRorTriggerPin) ||
(oldTopBPin != topEchoPin) ||
(oldBottomAPin != bottomPIRorTriggerPin) ||
(oldBottomBPin != bottomEchoPin)) {
changed = true;
pinManager.deallocatePin(oldTopAPin);
pinManager.deallocatePin(oldTopBPin);
pinManager.deallocatePin(oldBottomAPin);
pinManager.deallocatePin(oldBottomBPin);
}
if (changed) setup();
}
}
/*
* Shows the delay between steps and power-off time in the "info"
* tab of the web-UI.
*/
void addToJsonInfo(JsonObject& root) {
JsonObject staircase = root["u"];
if (staircase.isNull()) {
staircase = root.createNestedObject("u");
} }
topPIRorTriggerPin = min(39,max(-1,staircase[FPSTR(_topPIRorTrigger_pin)].as<int>())); JsonArray usermodEnabled = staircase.createNestedArray(F("Staircase")); // name
topEchoPin = min(39,max(-1,staircase[FPSTR(_topEcho_pin)].as<int>())); String btn = F("<button class=\"btn infobtn\" onclick=\"requestJson({staircase:{enabled:");
if (enabled) {
if (staircase[FPSTR(_useBottomUltrasoundSensor)].is<bool>()) { btn += F("false}},false,false);loadInfo();\">");
useUSSensorBottom = staircase[FPSTR(_useBottomUltrasoundSensor)].as<bool>(); btn += F("enabled");
} else { } else {
String str = staircase[FPSTR(_useBottomUltrasoundSensor)]; // checkbox -> off or on btn += F("true}},false,false);loadInfo();\">");
useUSSensorBottom = (bool)(str!="off"); // off is guaranteed to be present btn += F("disabled");
} }
bottomPIRorTriggerPin = min(39,max(-1,staircase[FPSTR(_bottomPIRorTrigger_pin)].as<int>())); btn += F("</button>");
bottomEchoPin = min(39,max(-1,staircase[FPSTR(_bottomEcho_pin)].as<int>())); usermodEnabled.add(btn); // value
topMaxTimeUs = min(18000,max(300,staircase[FPSTR(_topEchoTime)].as<int>())); // max distnace ~3m (a noticable lag of 18ms may be expected)
bottomMaxTimeUs = min(18000,max(300,staircase[FPSTR(_bottomEchoTime)].as<int>())); // max distance ~3m (a noticable lag of 18ms may be expected)
DEBUG_PRINTLN(F("Staircase config (re)loaded."));
} else {
DEBUG_PRINTLN(F("No config found. (Using defaults.)"));
} }
if (!initDone) {
// first run: reading from cfg.json
} else {
// changing paramters from settings page
bool changed = false;
if ((oldUseUSSensorTop != useUSSensorTop) ||
(oldUseUSSensorBottom != useUSSensorBottom) ||
(oldTopAPin != topPIRorTriggerPin) ||
(oldTopBPin != topEchoPin) ||
(oldBottomAPin != bottomPIRorTriggerPin) ||
(oldBottomBPin != bottomEchoPin)) {
changed = true;
pinManager.deallocatePin(oldTopAPin);
pinManager.deallocatePin(oldTopBPin);
pinManager.deallocatePin(oldBottomAPin);
pinManager.deallocatePin(oldBottomBPin);
}
if (changed) setup();
}
}
/*
* Shows the delay between steps and power-off time in the "info"
* tab of the web-UI.
*/
void addToJsonInfo(JsonObject& root) {
JsonObject staircase = root["u"];
if (staircase.isNull()) {
staircase = root.createNestedObject("u");
}
if (enabled) {
JsonArray usermodEnabled = staircase.createNestedArray(F("Staircase enabled")); // name
usermodEnabled.add("yes"); // value
JsonArray segmentDelay = staircase.createNestedArray(F("Delay between stairs")); // name
segmentDelay.add(segment_delay_ms); // value
segmentDelay.add("ms"); // unit
JsonArray onTime = staircase.createNestedArray(F("Power-off stairs after")); // name
onTime.add(on_time_ms / 1000); // value
onTime.add("s"); // unit
} else {
JsonArray usermodEnabled = staircase.createNestedArray(F("Staircase enabled")); // name
usermodEnabled.add("no"); // value
}
}
}; };
// strings to reduce flash memory usage (used more than twice) // strings to reduce flash memory usage (used more than twice)
@ -482,5 +527,5 @@ const char Animated_Staircase::_topEcho_pin[] PROGMEM = "topEcho_p
const char Animated_Staircase::_useBottomUltrasoundSensor[] PROGMEM = "useBottomUltrasoundSensor"; const char Animated_Staircase::_useBottomUltrasoundSensor[] PROGMEM = "useBottomUltrasoundSensor";
const char Animated_Staircase::_bottomPIRorTrigger_pin[] PROGMEM = "bottomPIRorTrigger_pin"; const char Animated_Staircase::_bottomPIRorTrigger_pin[] PROGMEM = "bottomPIRorTrigger_pin";
const char Animated_Staircase::_bottomEcho_pin[] PROGMEM = "bottomEcho_pin"; const char Animated_Staircase::_bottomEcho_pin[] PROGMEM = "bottomEcho_pin";
const char Animated_Staircase::_topEchoTime[] PROGMEM = "top-echo-us"; const char Animated_Staircase::_topEchoCm[] PROGMEM = "top-dist-cm";
const char Animated_Staircase::_bottomEchoTime[] PROGMEM = "bottom-echo-us"; const char Animated_Staircase::_bottomEchoCm[] PROGMEM = "bottom-dist-cm";

View File

@ -56,9 +56,6 @@ or remove them and put everything on one line.
| Setting | Description | Default | | Setting | Description | Default |
|------------------|---------------------------------------------------------------|---------| |------------------|---------------------------------------------------------------|---------|
| enabled | Enable or disable the usermod | true | | enabled | Enable or disable the usermod | true |
| segment-delay-ms | Delay (milliseconds) between switching on/off each step | 150 |
| on-time-s | Time (seconds) the stairs stay lit after last detection | 5 |
| bottom-echo-us | Detection range of ultrasonic sensor | 1749 |
| bottom-sensor | Manually trigger a down to up animation via API | false | | bottom-sensor | Manually trigger a down to up animation via API | false |
| top-sensor | Manually trigger an up to down animation via API | false | | top-sensor | Manually trigger an up to down animation via API | false |
@ -72,8 +69,6 @@ The staircase settings and sensor states are inside the WLED status element:
"state": { "state": {
"staircase": { "staircase": {
"enabled": true, "enabled": true,
"segment-delay-ms": 150,
"on-time-s": 5,
"bottom-sensor": false, "bottom-sensor": false,
"tops-ensor": false "tops-ensor": false
}, },
@ -94,58 +89,16 @@ curl -X POST -H "Content-Type: application/json" \
To enable the usermod again, use `"enabled":true`. To enable the usermod again, use `"enabled":true`.
### Changing animation parameters Alternatively you can use _Usermod_ Settings page where you can change other parameters as well.
To change the delay between the steps to (for example) 100 milliseconds and the on-time to
10 seconds:
```bash ### Changing animation parameters and detection range of the ultrasonic HC-SR04 sensor
curl -X POST -H "Content-Type: application/json" \ Using _Usermod_ Settings page you can define different usermod parameters, includng sensor pins, delay between segment activation and so on.
-d '{"staircase":{"segment-delay-ms":100,"on-time-s":10}}' \
xxx.xxx.xxx.xxx/json/state
```
### Changing detection range of the ultrasonic HC-SR04 sensor When an ultrasonic sensor is enabled you can enter maximum detection distance in centimeters separately for top and bottom sensors.
When an ultrasonic sensor is enabled in `Animated_Staircase_config.h`, you'll see a
`bottom-echo-us` setting appear in the json api:
```json
{
"state": {
"staircase": {
"enabled": true,
"segment-delay-ms": 150,
"on-time-s": 5,
"bottom-echo-us": 1749
},
}
```
If the HC-SR04 sensor detects an echo within 1749 microseconds (corresponding to ~30 cm
detection range from the sensor), it will trigger switching on the staircase. This setting
can be changed through the API with an HTTP POST:
```bash
curl -X POST -H "Content-Type: application/json" \
-d '{"staircase":{"bottom-echo-us":1166}}' \
xxx.xxx.xxx.xxx/json/state
```
Calculating the detection range can be performed as follows: The speed of sound is 343m/s at 20
degrees Centigrade. Since the sound has to travel back and forth, the detection range for the
sensor in cm is (0.0343 * maxTimeUs) / 2. To get you started, please find delays and distances below:
| Distance | Detection time |
|---------:|----------------:|
| 5 cm | 292 uS |
| 10 cm | 583 uS |
| 20 cm | 1166 uS |
| 30 cm | 1749 uS |
| 50 cm | 2915 uS |
| 100 cm | 5831 uS |
**Please note:** that using an HC-SR04 sensor, particularly when detecting echos at longer **Please note:** that using an HC-SR04 sensor, particularly when detecting echos at longer
distances creates delays in the WLED software, and _might_ introduce timing hickups in your animations or distances creates delays in the WLED software, and _might_ introduce timing hickups in your animations or
a less responsive web interface. It is therefore advised to keep the detection time as short as possible. a less responsive web interface. It is therefore advised to keep the detection distance as short as possible.
### Animation triggering through the API ### Animation triggering through the API
Instead of stairs activation by one of the sensors, you can also trigger the animation through Instead of stairs activation by one of the sensors, you can also trigger the animation through
@ -164,10 +117,15 @@ curl -X POST -H "Content-Type: application/json" \
-d '{"staircase":{"top-sensor":true}}' \ -d '{"staircase":{"top-sensor":true}}' \
xxx.xxx.xxx.xxx/json/state xxx.xxx.xxx.xxx/json/state
``` ```
**MQTT**
You can publish a message with either `up` or `down` on topic `/swipe` to trigger animation.
You can also use `on` or `off` for enabling or disabling usermod.
Have fun with this usermod.<br/> Have fun with this usermod.<br/>
www.rolfje.com www.rolfje.com
Modifications @blazoncek
## Change log ## Change log
2021-04 2021-04
* Adaptation for runtime configuration. * Adaptation for runtime configuration.

View File

@ -9,9 +9,7 @@ The LED strip is switched [using a relay](https://github.com/Aircoookie/WLED/wik
## Webinterface ## Webinterface
The info page in the web interface shows the items below The info page in the web interface shows the remaining time of the off timer.
- the remaining time of the off timer.
**I recommend to deactivate the sensor before an OTA update and activate it again afterwards**.
## Sensor connection ## Sensor connection
@ -63,7 +61,10 @@ void registerUsermods()
## API to enable/disable the PIR sensor from outside. For example from another usermod. ## API to enable/disable the PIR sensor from outside. For example from another usermod.
To query or change the PIR sensor state the methods `bool PIRsensorEnabled()` and `void EnablePIRsensor(bool enable)` are available. To query or change the PIR sensor state the methods `bool PIRsensorEnabled()` and `void EnablePIRsensor(bool enable)` are available.
When the PIR sensor state changes an MQTT message is broadcasted with topic `wled/deviceMAC/motion` and message `on` or `off`.
Usermod can also be configured to just send MQTT message and not change WLED state using settings page as well as responding to motion only during nighttime (assuming NTP and lattitude/longitude are set to determine sunrise/sunset times).
### There are two options to get access to the usermod instance: ### There are two options to get access to the usermod instance:

View File

@ -48,11 +48,11 @@ public:
/** /**
* Enable/Disable the PIR sensor * Enable/Disable the PIR sensor
*/ */
void EnablePIRsensor(bool enable) { m_PIRenabled = enable; } void EnablePIRsensor(bool en) { enabled = en; }
/** /**
* Get PIR sensor enabled/disabled state * Get PIR sensor enabled/disabled state
*/ */
bool PIRsensorEnabled() { return m_PIRenabled; } bool PIRsensorEnabled() { return enabled; }
private: private:
// PIR sensor pin // PIR sensor pin
@ -64,39 +64,68 @@ private:
// off timer start time // off timer start time
uint32_t m_offTimerStart = 0; uint32_t m_offTimerStart = 0;
// current PIR sensor pin state // current PIR sensor pin state
byte m_PIRsensorPinState = LOW; byte sensorPinState = LOW;
// PIR sensor enabled - ISR attached // PIR sensor enabled
bool m_PIRenabled = true; bool enabled = true;
// status of initialisation // status of initialisation
bool initDone = false; bool initDone = false;
// on and off presets
uint8_t m_onPreset = 0;
uint8_t m_offPreset = 0;
// flag to indicate that PIR sensor should activate WLED during nighttime only
bool m_nightTimeOnly = false;
// flag to send MQTT message only (assuming it is enabled)
bool m_mqttOnly = false;
unsigned long lastLoop = 0;
// strings to reduce flash memory usage (used more than twice) // strings to reduce flash memory usage (used more than twice)
static const char _name[]; static const char _name[];
static const char _switchOffDelay[]; static const char _switchOffDelay[];
static const char _enabled[]; static const char _enabled[];
static const char _onPreset[];
static const char _offPreset[];
static const char _nightTime[];
static const char _mqttOnly[];
/** /**
* return or change if new PIR sensor state is available * check if it is daytime
* if sunrise/sunset is not defined (no NTP or lat/lon) default to nighttime
*/ */
static volatile bool newPIRsensorState(bool changeState = false, bool newState = false); bool isDayTime() {
bool isDayTime = false;
updateLocalTime();
uint8_t hr = hour(localTime);
uint8_t mi = minute(localTime);
/** if (sunrise && sunset) {
* PIR sensor state has changed if (hour(sunrise)<hr && hour(sunset)>hr) {
*/ isDayTime = true;
static void IRAM_ATTR ISR_PIRstateChange(); } else {
if (hour(sunrise)==hr && minute(sunrise)<mi) {
isDayTime = true;
}
if (hour(sunset)==hr && minute(sunset)>mi) {
isDayTime = true;
}
}
}
return isDayTime;
}
/** /**
* switch strip on/off * switch strip on/off
*/ */
void switchStrip(bool switchOn) void switchStrip(bool switchOn)
{ {
if (switchOn && bri == 0) if (switchOn && m_onPreset) {
{ applyPreset(m_onPreset);
} else if (!switchOn && m_offPreset) {
applyPreset(m_offPreset);
} else if (switchOn && bri == 0) {
bri = briLast; bri = briLast;
colorUpdated(NotifyUpdateMode); colorUpdated(NotifyUpdateMode);
} } else if (!switchOn && bri != 0) {
else if (!switchOn && bri != 0)
{
briLast = bri; briLast = bri;
bri = 0; bri = 0;
colorUpdated(NotifyUpdateMode); colorUpdated(NotifyUpdateMode);
@ -110,7 +139,7 @@ private:
char subuf[64]; char subuf[64];
strcpy(subuf, mqttDeviceTopic); strcpy(subuf, mqttDeviceTopic);
strcat_P(subuf, PSTR("/motion")); strcat_P(subuf, PSTR("/motion"));
mqtt->publish(subuf, 0, true, state); mqtt->publish(subuf, 0, false, state);
} }
} }
@ -120,22 +149,18 @@ private:
*/ */
bool updatePIRsensorState() bool updatePIRsensorState()
{ {
if (newPIRsensorState()) bool pinState = digitalRead(PIRsensorPin);
{ if (pinState != sensorPinState) {
m_PIRsensorPinState = digitalRead(PIRsensorPin); sensorPinState = pinState; // change previous state
if (m_PIRsensorPinState == HIGH) if (sensorPinState == HIGH) {
{
m_offTimerStart = 0; m_offTimerStart = 0;
switchStrip(true); if (!m_mqttOnly && (!m_nightTimeOnly || (m_nightTimeOnly && !isDayTime()))) switchStrip(true);
publishMqtt("on"); publishMqtt("on");
} } else /*if (bri != 0)*/ {
else if (bri != 0)
{
// start switch off timer // start switch off timer
m_offTimerStart = millis(); m_offTimerStart = millis();
} }
newPIRsensorState(true, false);
return true; return true;
} }
return false; return false;
@ -148,9 +173,9 @@ private:
{ {
if (m_offTimerStart > 0 && millis() - m_offTimerStart > m_switchOffDelay) if (m_offTimerStart > 0 && millis() - m_offTimerStart > m_switchOffDelay)
{ {
if (m_PIRenabled == true) if (enabled == true)
{ {
switchStrip(false); if (!m_mqttOnly && (!m_nightTimeOnly || (m_nightTimeOnly && !isDayTime()))) switchStrip(false);
publishMqtt("off"); publishMqtt("off");
} }
m_offTimerStart = 0; m_offTimerStart = 0;
@ -171,14 +196,13 @@ public:
// pin retrieved from cfg.json (readFromConfig()) prior to running setup() // pin retrieved from cfg.json (readFromConfig()) prior to running setup()
if (!pinManager.allocatePin(PIRsensorPin,false)) { if (!pinManager.allocatePin(PIRsensorPin,false)) {
PIRsensorPin = -1; // allocation failed PIRsensorPin = -1; // allocation failed
m_PIRenabled = false; enabled = false;
DEBUG_PRINTLN(F("PIRSensorSwitch pin allocation failed.")); DEBUG_PRINTLN(F("PIRSensorSwitch pin allocation failed."));
} else { } else {
// PIR Sensor mode INPUT_PULLUP // PIR Sensor mode INPUT_PULLUP
pinMode(PIRsensorPin, INPUT_PULLUP); pinMode(PIRsensorPin, INPUT_PULLUP);
if (m_PIRenabled) { if (enabled) {
// assign interrupt function and set CHANGE mode sensorPinState = digitalRead(PIRsensorPin);
attachInterrupt(digitalPinToInterrupt(PIRsensorPin), ISR_PIRstateChange, CHANGE);
} }
} }
initDone = true; initDone = true;
@ -197,6 +221,11 @@ public:
*/ */
void loop() void loop()
{ {
// only check sensors 10x/s
unsigned long now = millis();
if (now - lastLoop < 100) return;
lastLoop = now;
if (!updatePIRsensorState()) { if (!updatePIRsensorState()) {
handleOffTimer(); handleOffTimer();
} }
@ -210,38 +239,10 @@ public:
void addToJsonInfo(JsonObject &root) void addToJsonInfo(JsonObject &root)
{ {
JsonObject user = root["u"]; JsonObject user = root["u"];
if (user.isNull()) if (user.isNull()) user = root.createNestedObject("u");
user = root.createNestedObject("u");
/*
JsonArray infoArr = user.createNestedArray(F("<i class=\"icons\">&#xe08f;</i> PIR sensor state")); //name
String uiDomString = F("<button class=\"btn infobtn\" onclick=\"requestJson({PIRenabled:");
String sensorStateInfo;
// PIR sensor state if (enabled)
if (m_PIRenabled)
{ {
uiDomString += "false";
sensorStateInfo = (m_PIRsensorPinState != LOW ? FPSTR(F("active")) : FPSTR(F("inactive"))); //value
}
else
{
uiDomString += "true";
sensorStateInfo = F("Disabled!");
}
uiDomString += F("});return false;\">");
uiDomString += sensorStateInfo;
uiDomString += F("</button>");
infoArr.add(uiDomString); //value
*/
if (m_PIRenabled)
{
/*
JsonArray infoArr = user.createNestedArray(F("PIR switch-off timer after")); //name
String uiDomString = F("<input type=\"number\" min=\"1\" max=\"720\" value=\"");
uiDomString += (m_switchOffDelay / 60000);
uiDomString += F("\" onchange=\"requestJson({PIRoffSec:parseInt(this.value)*60});\">min");
infoArr.add(uiDomString);
*/
// off timer // off timer
String uiDomString = F("PIR <i class=\"icons\">&#xe325;</i>"); String uiDomString = F("PIR <i class=\"icons\">&#xe325;</i>");
JsonArray infoArr = user.createNestedArray(uiDomString); // timer value JsonArray infoArr = user.createNestedArray(uiDomString); // timer value
@ -271,66 +272,34 @@ public:
uiDomString += (offSeconds); uiDomString += (offSeconds);
infoArr.add(uiDomString + F("s")); infoArr.add(uiDomString + F("s"));
} else { } else {
infoArr.add(F("inactive")); infoArr.add(sensorPinState ? F("sensor on") : F("inactive"));
} }
} else {
String uiDomString = F("PIR sensor");
JsonArray infoArr = user.createNestedArray(uiDomString);
infoArr.add(F("disabled"));
} }
} }
/** /**
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object). * addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients * Values in the state object may be modified by connected clients
* Add "PIRenabled" to json state. This can be used to disable/enable the sensor.
* Add "PIRoffSec" to json state. This can be used to adjust <m_switchOffDelay> milliseconds.
*/ */
/*
void addToJsonState(JsonObject &root) void addToJsonState(JsonObject &root)
{ {
root[FPSTR(_enabled)] = m_PIRenabled;
root[FPSTR(_switchOffDelay)] = (m_switchOffDelay / 1000);
} }
*/
/** /**
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object). * readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients * Values in the state object may be modified by connected clients
* Read "PIRenabled" from json state and switch enable/disable the PIR sensor.
* Read "PIRoffSec" from json state and adjust <m_switchOffDelay> milliseconds.
*/ */
/*
void readFromJsonState(JsonObject &root) void readFromJsonState(JsonObject &root)
{ {
if (root[FPSTR(_switchOffDelay)] != nullptr) {
m_switchOffDelay = (1000 * max(60UL, min(43200UL, root[FPSTR(_switchOffDelay)].as<unsigned long>())));
}
/*
if (root["pin"] != nullptr) {
int8_t pin = (int)root["pin"];
// check if pin is OK
if (pin != PIRsensorPin && pin>=0 && pinManager.allocatePin(pin,false)) {
// deallocate old pin
pinManager.deallocatePin(PIRsensorPin);
// PIR Sensor mode INPUT_PULLUP
pinMode(pin, INPUT_PULLUP);
if (m_PIRenabled)
{
// remove old ISR
detachInterrupt(PIRsensorPin);
// assign interrupt function and set CHANGE mode
attachInterrupt(digitalPinToInterrupt(pin), ISR_PIRstateChange, CHANGE);
newPIRsensorState(true, true);
}
PIRsensorPin = pin;
}
}
if (root[FPSTR(_enabled)] != nullptr) {
if (root[FPSTR(_enabled)] && !m_PIRenabled && PIRsensorPin >= 0) {
attachInterrupt(digitalPinToInterrupt(PIRsensorPin), ISR_PIRstateChange, CHANGE);
newPIRsensorState(true, true);
} else if (m_PIRenabled && PIRsensorPin >= 0) {
detachInterrupt(PIRsensorPin);
}
m_PIRenabled = root[FPSTR(_enabled)];
}
*/
} }
*/
/** /**
* provide the changeable values * provide the changeable values
@ -338,9 +307,13 @@ public:
void addToConfig(JsonObject &root) void addToConfig(JsonObject &root)
{ {
JsonObject top = root.createNestedObject(FPSTR(_name)); JsonObject top = root.createNestedObject(FPSTR(_name));
top[FPSTR(_enabled)] = m_PIRenabled; top[FPSTR(_enabled)] = enabled;
top[FPSTR(_switchOffDelay)] = m_switchOffDelay / 1000; top[FPSTR(_switchOffDelay)] = m_switchOffDelay / 1000;
top["pin"] = PIRsensorPin; top["pin"] = PIRsensorPin;
top[FPSTR(_onPreset)] = m_onPreset;
top[FPSTR(_offPreset)] = m_offPreset;
top[FPSTR(_nightTime)] = m_nightTimeOnly;
top[FPSTR(_mqttOnly)] = m_mqttOnly;
DEBUG_PRINTLN(F("PIR config saved.")); DEBUG_PRINTLN(F("PIR config saved."));
} }
@ -350,7 +323,7 @@ public:
*/ */
void readFromConfig(JsonObject &root) void readFromConfig(JsonObject &root)
{ {
bool oldEnabled = m_PIRenabled; bool oldEnabled = enabled;
int8_t oldPin = PIRsensorPin; int8_t oldPin = PIRsensorPin;
JsonObject top = root[FPSTR(_name)]; JsonObject top = root[FPSTR(_name)];
@ -362,11 +335,11 @@ public:
if (top[FPSTR(_enabled)] != nullptr) { if (top[FPSTR(_enabled)] != nullptr) {
if (top[FPSTR(_enabled)].is<bool>()) { if (top[FPSTR(_enabled)].is<bool>()) {
m_PIRenabled = top[FPSTR(_enabled)].as<bool>(); // reading from cfg.json enabled = top[FPSTR(_enabled)].as<bool>(); // reading from cfg.json
} else { } else {
// change from settings page // change from settings page
String str = top[FPSTR(_enabled)]; // checkbox -> off or on String str = top[FPSTR(_enabled)]; // checkbox -> off or on
m_PIRenabled = (bool)(str!="off"); // off is guaranteed to be present enabled = (bool)(str!="off"); // off is guaranteed to be present
} }
} }
@ -374,15 +347,39 @@ public:
m_switchOffDelay = (top[FPSTR(_switchOffDelay)].as<int>() * 1000); m_switchOffDelay = (top[FPSTR(_switchOffDelay)].as<int>() * 1000);
} }
if (top[FPSTR(_onPreset)] != nullptr) {
m_onPreset = max(0,min(250,top[FPSTR(_onPreset)].as<int>()));
}
if (top[FPSTR(_offPreset)] != nullptr) {
m_offPreset = max(0,min(250,top[FPSTR(_offPreset)].as<int>()));
}
if (top[FPSTR(_nightTime)] != nullptr) {
if (top[FPSTR(_nightTime)].is<bool>()) {
m_nightTimeOnly = top[FPSTR(_nightTime)].as<bool>(); // reading from cfg.json
} else {
// change from settings page
String str = top[FPSTR(_nightTime)]; // checkbox -> off or on
m_nightTimeOnly = (bool)(str!="off"); // off is guaranteed to be present
}
}
if (top[FPSTR(_mqttOnly)] != nullptr) {
if (top[FPSTR(_mqttOnly)].is<bool>()) {
m_mqttOnly = top[FPSTR(_mqttOnly)].as<bool>(); // reading from cfg.json
} else {
// change from settings page
String str = top[FPSTR(_mqttOnly)]; // checkbox -> off or on
m_mqttOnly = (bool)(str!="off"); // off is guaranteed to be present
}
}
if (!initDone) { if (!initDone) {
// reading config prior to setup() // reading config prior to setup()
DEBUG_PRINTLN(F("PIR config loaded.")); DEBUG_PRINTLN(F("PIR config loaded."));
} else { } else {
if (oldPin != PIRsensorPin || oldEnabled != m_PIRenabled) { if (oldPin != PIRsensorPin || oldEnabled != enabled) {
if (oldEnabled) {
// remove old ISR if disabling usermod
detachInterrupt(oldPin);
}
// check if pin is OK // check if pin is OK
if (oldPin != PIRsensorPin && oldPin >= 0) { if (oldPin != PIRsensorPin && oldPin >= 0) {
// if we are changing pin in settings page // if we are changing pin in settings page
@ -393,12 +390,11 @@ public:
} else { } else {
// allocation failed // allocation failed
PIRsensorPin = -1; PIRsensorPin = -1;
m_PIRenabled = false; enabled = false;
} }
} }
if (m_PIRenabled) { if (enabled) {
attachInterrupt(digitalPinToInterrupt(PIRsensorPin), ISR_PIRstateChange, CHANGE); sensorPinState = digitalRead(PIRsensorPin);
newPIRsensorState(true, true);
} }
DEBUG_PRINTLN(F("PIR config (re)loaded.")); DEBUG_PRINTLN(F("PIR config (re)loaded."));
} }
@ -415,25 +411,11 @@ public:
} }
}; };
//////////////////////////////////////////////////////
// PIRsensorSwitch static method implementations
volatile bool PIRsensorSwitch::newPIRsensorState(bool changeState, bool newState)
{
static volatile bool s_PIRsensorState = false;
if (changeState)
{
s_PIRsensorState = newState;
}
return s_PIRsensorState;
}
void IRAM_ATTR PIRsensorSwitch::ISR_PIRstateChange()
{
newPIRsensorState(true, true);
}
// strings to reduce flash memory usage (used more than twice) // strings to reduce flash memory usage (used more than twice)
const char PIRsensorSwitch::_name[] PROGMEM = "PIRsensorSwitch"; const char PIRsensorSwitch::_name[] PROGMEM = "PIRsensorSwitch";
const char PIRsensorSwitch::_enabled[] PROGMEM = "PIRenabled"; const char PIRsensorSwitch::_enabled[] PROGMEM = "PIRenabled";
const char PIRsensorSwitch::_switchOffDelay[] PROGMEM = "PIRoffSec"; const char PIRsensorSwitch::_switchOffDelay[] PROGMEM = "PIRoffSec";
const char PIRsensorSwitch::_onPreset[] PROGMEM = "on-preset";
const char PIRsensorSwitch::_offPreset[] PROGMEM = "off-preset";
const char PIRsensorSwitch::_nightTime[] PROGMEM = "nighttime-only";
const char PIRsensorSwitch::_mqttOnly[] PROGMEM = "mqtt-only";

View File

@ -3,7 +3,7 @@
Based on the excellent `QuinLED_Dig_Uno_Temp_MQTT` by srg74 and 400killer! Based on the excellent `QuinLED_Dig_Uno_Temp_MQTT` by srg74 and 400killer!
This usermod will read from an attached DS18B20 temperature sensor (as available on the QuinLED Dig-Uno) This usermod will read from an attached DS18B20 temperature sensor (as available on the QuinLED Dig-Uno)
The temperature is displayed both in the Info section of the web UI as well as published to the `/temperature` MQTT topic if enabled. The temperature is displayed both in the Info section of the web UI as well as published to the `/temperature` MQTT topic if enabled.
This usermod will be expanded with support for different sensor types in the future. This usermod may be expanded with support for different sensor types in the future.
If temperature sensor is not detected during boot, this usermod will be disabled. If temperature sensor is not detected during boot, this usermod will be disabled.
@ -16,18 +16,19 @@ Copy the example `platformio_override.ini` to the root directory. This file sho
* `USERMOD_DALLASTEMPERATURE` - define this to have this user mod included wled00\usermods_list.cpp * `USERMOD_DALLASTEMPERATURE` - define this to have this user mod included wled00\usermods_list.cpp
* `USERMOD_DALLASTEMPERATURE_FIRST_MEASUREMENT_AT` - the number of milliseconds after boot to take first measurement, defaults to 20 seconds * `USERMOD_DALLASTEMPERATURE_FIRST_MEASUREMENT_AT` - the number of milliseconds after boot to take first measurement, defaults to 20 seconds
All parameters can be configured at runtime using Usermods settings page. All parameters can be configured at runtime using Usermods settings page, including pin, selection to display temerature in degrees Celsius or Farenheit mand measurement interval.
## Project link ## Project link
* [QuinLED-Dig-Uno](https://quinled.info/2018/09/15/quinled-dig-uno/) - Project link * [QuinLED-Dig-Uno](https://quinled.info/2018/09/15/quinled-dig-uno/) - Project link
* [Srg74-WLED-Wemos-shield](https://github.com/srg74/WLED-wemos-shield) - another great DIY WLED board
### PlatformIO requirements ### PlatformIO requirements
If you are using `platformio_override.ini`, you should be able to refresh the task list and see your custom task, for example `env:d1_mini_usermod_dallas_temperature_C`. If you are using `platformio_override.ini`, you should be able to refresh the task list and see your custom task, for example `env:d1_mini_usermod_dallas_temperature_C`.
If you are not using `platformio_override.ini`, you might have to uncomment `DallasTemperature@~3.8.0`,`OneWire@~2.3.5 under` `[common]` section in `platformio.ini`: If you are not using `platformio_override.ini`, you might have to uncomment `OneWire@~2.3.5 under` `[common]` section in `platformio.ini`:
```ini ```ini
# platformio.ini # platformio.ini

View File

@ -1,8 +1,6 @@
#pragma once #pragma once
#include "wled.h" #include "wled.h"
//#include <DallasTemperature.h> //DS18B20
#include "OneWire.h" #include "OneWire.h"
//Pin defaults for QuinLed Dig-Uno if not overriden //Pin defaults for QuinLed Dig-Uno if not overriden
@ -164,9 +162,9 @@ class UsermodTemperature : public Usermod {
// the DallasTemperature library returns -127C or -196.6F when problem // the DallasTemperature library returns -127C or -196.6F when problem
// reading the sensor // reading the sensor
strcat_P(subuf, PSTR("/temperature")); strcat_P(subuf, PSTR("/temperature"));
mqtt->publish(subuf, 0, true, String(temperature).c_str()); mqtt->publish(subuf, 0, false, String(temperature).c_str());
strcat_P(subuf, PSTR("_f")); strcat_P(subuf, PSTR("_f"));
mqtt->publish(subuf, 0, true, String((float)temperature * 1.8f + 32).c_str()); mqtt->publish(subuf, 0, false, String((float)temperature * 1.8f + 32).c_str());
} else { } else {
// publish something else to indicate status? // publish something else to indicate status?
} }

View File

@ -2,6 +2,30 @@
This usermod-v2 modification allows the connection of multiple relays each with individual delay and on/off mode. This usermod-v2 modification allows the connection of multiple relays each with individual delay and on/off mode.
## HTTP API
All responses are returned as JSON.
Status Request: `http://[device-ip]/relays`
Switch Command: `http://[device-ip]/relays?switch=1,0,1,1`
The number of numbers behind the switch parameter must correspond to the number of relays. The number 1 switches the relay on. The number 0 switches the relay off.
Toggle Command: `http://[device-ip]/relays?toggle=1,0,1,1`
The number of numbers behind the parameter switch must correspond to the number of relays. The number 1 causes a toggling of the relay. The number 0 leaves the state of the device.
Examples
1. 4 relays at all, relay 2 will be toggled: `http://[device-ip]/relays?toggle=0,1,0,0`
2. 3 relays at all, relay 1&3 will be switched on: `http://[device-ip]/relays?switch=1,0,1`
## MQTT API
wled/deviceMAC/relay/0/command on|off|toggle
wled/deviceMAC/relay/1/command on|off|toggle
When relay is switched it will publish a message:
wled/deviceMAC/relay/0 on|off
## Usermod installation ## Usermod installation
1. Register the usermod by adding `#include "../usermods/multi_relay/usermod_multi_relay.h"` at the top and `usermods.add(new MultiRelay());` at the bottom of `usermods_list.cpp`. 1. Register the usermod by adding `#include "../usermods/multi_relay/usermod_multi_relay.h"` at the top and `usermods.add(new MultiRelay());` at the bottom of `usermods_list.cpp`.

View File

@ -56,7 +56,7 @@ class MultiRelay : public Usermod {
if (WLED_MQTT_CONNECTED){ if (WLED_MQTT_CONNECTED){
char subuf[64]; char subuf[64];
sprintf_P(subuf, PSTR("%s/relay/%d"), mqttDeviceTopic, relay); sprintf_P(subuf, PSTR("%s/relay/%d"), mqttDeviceTopic, relay);
mqtt->publish(subuf, 0, true, state); mqtt->publish(subuf, 0, false, state);
} }
} }
@ -88,7 +88,7 @@ class MultiRelay : public Usermod {
DEBUG_PRINTLN("Relays: HTML API"); DEBUG_PRINTLN("Relays: HTML API");
String janswer; String janswer;
String error = ""; String error = "";
int params = request->params(); //int params = request->params();
janswer = F("{\"NoOfRelays\":"); janswer = F("{\"NoOfRelays\":");
janswer += String(MULTI_RELAY_MAX_RELAYS) + ","; janswer += String(MULTI_RELAY_MAX_RELAYS) + ",";
@ -281,7 +281,7 @@ class MultiRelay : public Usermod {
* loop() is called continuously. Here you can check for events, read sensors, etc. * loop() is called continuously. Here you can check for events, read sensors, etc.
*/ */
void loop() { void loop() {
if (!enabled) return; if (!enabled || strip.isUpdating()) return;
static unsigned long lastUpdate = 0; static unsigned long lastUpdate = 0;
if (millis() - lastUpdate < 200) return; // update only 5 times/s if (millis() - lastUpdate < 200) return; // update only 5 times/s

View File

@ -313,11 +313,7 @@ class FourLineDisplayUsermod : public Usermod {
} }
// Update last known values. // Update last known values.
#if defined(ESP8266)
knownSsid = apActive ? WiFi.softAPSSID() : WiFi.SSID(); knownSsid = apActive ? WiFi.softAPSSID() : WiFi.SSID();
#else
knownSsid = WiFi.SSID();
#endif
knownIp = apActive ? IPAddress(4, 3, 2, 1) : WiFi.localIP(); knownIp = apActive ? IPAddress(4, 3, 2, 1) : WiFi.localIP();
knownBrightness = bri; knownBrightness = bri;
knownMode = strip.getMode(); knownMode = strip.getMode();
@ -409,9 +405,9 @@ class FourLineDisplayUsermod : public Usermod {
if (!insideQuotes || (qComma != knownMode)) break; if (!insideQuotes || (qComma != knownMode)) break;
lineBuffer[printedChars++] = singleJsonSymbol; lineBuffer[printedChars++] = singleJsonSymbol;
} }
if ((qComma > knownMode) || (printedChars > getCols()-2) || printedChars > sizeof(lineBuffer)-2) break; if ((qComma > knownMode) || (printedChars >= getCols()-2) || printedChars >= sizeof(lineBuffer)-2) break;
} }
for (;printedChars < getCols()-2 || printedChars > sizeof(lineBuffer)-2; printedChars++) lineBuffer[printedChars]=' '; for (;printedChars < getCols()-2 && printedChars < sizeof(lineBuffer)-2; printedChars++) lineBuffer[printedChars]=' ';
lineBuffer[printedChars] = 0; lineBuffer[printedChars] = 0;
drawString(2, row*lineHeight, lineBuffer); drawString(2, row*lineHeight, lineBuffer);
} }

View File

@ -46,6 +46,7 @@
#define USERMOD_ID_MODE_SORT 11 //Usermod "usermod_v2_mode_sort.h" #define USERMOD_ID_MODE_SORT 11 //Usermod "usermod_v2_mode_sort.h"
#define USERMOD_ID_VL53L0X 12 //Usermod "usermod_vl53l0x_gestures.h" #define USERMOD_ID_VL53L0X 12 //Usermod "usermod_vl53l0x_gestures.h"
#define USERMOD_ID_MULTI_RELAY 101 //Usermod "usermod_multi_relay.h" #define USERMOD_ID_MULTI_RELAY 101 //Usermod "usermod_multi_relay.h"
#define USERMOD_ID_ANIMATED_STAIRCASE 102 //Usermod "Animated_Staircase.h"
//Access point behavior //Access point behavior
#define AP_BEHAVIOR_BOOT_NO_CONN 0 //Open AP when no connection after boot #define AP_BEHAVIOR_BOOT_NO_CONN 0 //Open AP when no connection after boot