Addec config save/load.

Changed double to float.
This commit is contained in:
Blaz Kristan 2022-06-09 18:55:35 +02:00
parent a6746f77f0
commit 1828a2a81c

View File

@ -39,8 +39,10 @@ constexpr int SAMPLE_RATE = 10240; // Base sample rate in Hz
//#define MAJORPEAK_SUPPRESS_NOISE // define to activate a dirty hack that ignores the lowest + hightest FFT bins
byte audioSyncEnabled = 0;
uint16_t audioSyncPort = 11988;
// globals
static byte audioSyncEnabled = 0;
static uint16_t audioSyncPort = 11988;
uint8_t inputLevel; // UI slider value
//
@ -154,7 +156,7 @@ void FFTcode(void * parameter) {
// taskYIELD(), yield(), vTaskDelay() and esp_task_wdt_feed() didn't seem to work.
// Only run the FFT computing code if we're not in Receive mode
if (audioSyncEnabled & (1 << 1))
if (audioSyncEnabled & 0x02)
continue;
audioSource->getSamples(vReal, samplesFFT);
@ -293,29 +295,20 @@ void FFTcode(void * parameter) {
fftCalc[14] = (fftAdd(147,194)) /48; // 2940 - 3900
fftCalc[15] = (fftAdd(194, 255)) /62; // 3880 - 5120
// Noise supression of fftCalc bins using soundSquelch adjustment for different input types.
for (int i=0; i < 16; i++) {
fftCalc[i] -= (float)soundSquelch*(float)linearNoise[i]/4.0 <= 0? 0 : fftCalc[i];
}
// Noise supression of fftCalc bins using soundSquelch adjustment for different input types.
fftCalc[i] -= (float)soundSquelch * (float)linearNoise[i] / 4.0f <= 0.0f ? 0 : fftCalc[i];
// Adjustment for frequency curves.
for (int i=0; i < 16; i++) {
fftCalc[i] *= fftResultPink[i];
}
// Manual linear adjustment of gain using sampleGain adjustment for different input types.
for (int i=0; i < 16; i++) {
if (soundAgc)
fftCalc[i] = fftCalc[i] * multAgc;
else
fftCalc[i] = fftCalc[i] * (double)sampleGain / 40.0 * inputLevel/128 + (double)fftCalc[i]/16.0; //with inputLevel adjustment
}
fftCalc[i] *= soundAgc ? multAgc : (float)sampleGain/40.0f * inputLevel/128 + (float)fftCalc[i]/16.0f; //with inputLevel adjustment
// Now, let's dump it all into fftResult. Need to do this, otherwise other routines might grab fftResult values prematurely.
for (int i=0; i < 16; i++) {
// fftResult[i] = (int)fftCalc[i];
fftResult[i] = constrain((int)fftCalc[i], 0, 254); // question: why do we constrain values to 8bit here ???
fftAvg[i] = (float)fftResult[i]*.05 + (1-.05)*fftAvg[i];
fftAvg[i] = (float)fftResult[i]*0.05f + (1.0f - 0.05f)*fftAvg[i]; // why no just 0.95f*fftAvg[i]?
}
// release second sample to volume reactive effects.
@ -364,7 +357,7 @@ class AudioReactive : public Usermod {
int8_t i2sckPin = I2S_CKPIN;
#endif
WiFiUDP fftUdp;
#define UDP_SYNC_HEADER "00001"
struct audioSyncPacket {
char header[6] = UDP_SYNC_HEADER;
uint8_t myVals[32]; // 32 Bytes
@ -377,8 +370,9 @@ class AudioReactive : public Usermod {
double FFT_MajorPeak; // 08 Bytes
};
WiFiUDP fftUdp;
// set your config variables to their boot default value (this can also be done in readFromConfig() or a constructor if you prefer)
#define UDP_SYNC_HEADER "00001"
uint8_t maxVol = 10; // Reasonable value for constant volume for 'peak detector', as it won't always trigger
uint8_t binNum; // Used to select the bin for FFT based beat detection.
@ -402,15 +396,16 @@ class AudioReactive : public Usermod {
float beat = 0.f; // beat Detection
float expAdjF; // Used for exponential filter.
float weighting = 0.2; // Exponential filter weighting. Will be adjustable in a future release.
float weighting = 0.2f; // Exponential filter weighting. Will be adjustable in a future release.
bool udpSyncConnected = false;
// strings to reduce flash memory usage (used more than twice)
static const char _name[];
static const char _analogmic[];
static const char _digitalmic[];
double mapf(double x, double in_min, double in_max, double out_min, double out_max);
bool isValidUdpSyncVersion(char header[6]) {
if (strncmp(header, UDP_SYNC_HEADER, 6) == 0) {
return true;
@ -419,6 +414,7 @@ class AudioReactive : public Usermod {
}
}
void logAudio() {
#ifdef MIC_LOGGER
//Serial.print("micData:"); Serial.print(micData); Serial.print("\t");
@ -500,6 +496,7 @@ class AudioReactive : public Usermod {
#endif // FFT_SAMPLING_LOG
} // logAudio()
/*
* A "PI control" multiplier to automatically adjust sound sensitivity.
*
@ -520,10 +517,10 @@ class AudioReactive : public Usermod {
float tmpAgc = sampleReal * multAgc; // what-if amplified signal
float control_error; // "control error" input for PI control
static double control_integrated = 0.0; // "integrator control" = accumulated error
static float control_integrated = 0.0f; // "integrator control" = accumulated error
if (last_soundAgc != soundAgc)
control_integrated = 0.0; // new preset - reset integrator
control_integrated = 0.0f; // new preset - reset integrator
// For PI control, we need to have a contant "frequency"
// so let's make sure that the control loop is not running at insane speed
@ -532,13 +529,13 @@ class AudioReactive : public Usermod {
if (time_now - last_time > 2) {
last_time = time_now;
if((fabs(sampleReal) < 2.0) || (sampleMax < 1.0)) {
if((fabs(sampleReal) < 2.0f) || (sampleMax < 1.0f)) {
// MIC signal is "squelched" - deliver silence
multAgcTemp = multAgc; // keep old control value (no change)
tmpAgc = 0;
// we need to "spin down" the intgrated error buffer
if (fabs(control_integrated) < 0.01) control_integrated = 0.0;
else control_integrated = control_integrated * 0.91;
if (fabs(control_integrated) < 0.01f) control_integrated = 0.0f;
else control_integrated = control_integrated * 0.91f;
} else {
// compute new setpoint
if (tmpAgc <= agcTarget0Up[AGC_preset])
@ -547,17 +544,17 @@ class AudioReactive : public Usermod {
multAgcTemp = agcTarget1[AGC_preset] / sampleMax; // Make the multiplier so that sampleMax * multiplier = second setpoint
}
// limit amplification
if (multAgcTemp > 32.0) multAgcTemp = 32.0;
if (multAgcTemp < 1.0/64.0) multAgcTemp = 1.0/64.0;
if (multAgcTemp > 32.0f) multAgcTemp = 32.0f;
if (multAgcTemp < 1.0f/64.0f) multAgcTemp = 1.0f/64.0f;
// compute error terms
control_error = multAgcTemp - lastMultAgc;
if (((multAgcTemp > 0.085) && (multAgcTemp < 6.5)) //integrator anti-windup by clamping
if (((multAgcTemp > 0.085f) && (multAgcTemp < 6.5f)) //integrator anti-windup by clamping
&& (multAgc*sampleMax < agcZoneStop[AGC_preset])) //integrator ceiling (>140% of max)
control_integrated += control_error * 0.002 * 0.25; // 2ms = intgration time; 0.25 for damping
control_integrated += control_error * 0.002f * 0.25f; // 2ms = intgration time; 0.25 for damping
else
control_integrated *= 0.9; // spin down that beasty integrator
control_integrated *= 0.9f; // spin down that beasty integrator
// apply PI Control
tmpAgc = sampleReal * lastMultAgc; // check "zone" of the signal using previous gain
@ -570,22 +567,22 @@ class AudioReactive : public Usermod {
}
// limit amplification again - PI controler sometimes "overshoots"
if (multAgcTemp > 32.0) multAgcTemp = 32.0;
if (multAgcTemp < 1.0/64.0) multAgcTemp = 1.0/64.0;
if (multAgcTemp > 32.0f) multAgcTemp = 32.0f;
if (multAgcTemp < 1.0f/64.0f) multAgcTemp = 1.0f/64.0f;
}
// NOW finally amplify the signal
tmpAgc = sampleReal * multAgcTemp; // apply gain to signal
if(fabs(sampleReal) < 2.0) tmpAgc = 0; // apply squelch threshold
if(fabs(sampleReal) < 2.0f) tmpAgc = 0; // apply squelch threshold
if (tmpAgc > 255) tmpAgc = 255; // limit to 8bit
if (tmpAgc < 1) tmpAgc = 0; // just to be sure
// update global vars ONCE - multAgc, sampleAGC, rawSampleAgc
multAgc = multAgcTemp;
rawSampleAgc = 0.8 * tmpAgc + 0.2 * (float)rawSampleAgc;
rawSampleAgc = 0.8f * tmpAgc + 0.2f * (float)rawSampleAgc;
// update smoothed AGC sample
if(fabs(tmpAgc) < 1.0)
sampleAgc = 0.5 * tmpAgc + 0.5 * sampleAgc; // fast path to zero
if(fabs(tmpAgc) < 1.0f)
sampleAgc = 0.5f * tmpAgc + 0.5f * sampleAgc; // fast path to zero
else
sampleAgc = sampleAgc + agcSampleSmooth[AGC_preset] * (tmpAgc - sampleAgc); // smooth path
@ -595,6 +592,7 @@ class AudioReactive : public Usermod {
last_soundAgc = soundAgc;
} // agcAvg()
void getSample() {
static long peakTime;
@ -617,8 +615,8 @@ class AudioReactive : public Usermod {
#endif
// Note to self: the next line kills 80% of sample - "miclev" filter runs at "full arduino loop" speed, following the signal almost instantly!
//micLev = ((micLev * 31) + micIn) / 32; // Smooth it out over the last 32 samples for automatic centering
micLev = ((micLev * 8191.0) + micDataReal) / 8192.0; // takes a few seconds to "catch up" with the Mic Input
if(micIn < micLev) micLev = ((micLev * 31.0) + micDataReal) / 32.0; // align MicLev to lowest input signal
micLev = ((micLev * 8191.0f) + micDataReal) / 8192.0f; // takes a few seconds to "catch up" with the Mic Input
if(micIn < micLev) micLev = ((micLev * 31.0f) + micDataReal) / 32.0f; // align MicLev to lowest input signal
micIn -= micLev; // Let's center it to 0 now
/*---------DEBUG---------*/
@ -646,17 +644,17 @@ class AudioReactive : public Usermod {
sample = (int)sampleAdj; // ONLY update sample ONCE!!!!
// keep "peak" sample, but decay value if current sample is below peak
if ((sampleMax < sampleReal) && (sampleReal > 0.5)) {
sampleMax = sampleMax + 0.5 * (sampleReal - sampleMax); // new peak - with some filtering
if ((sampleMax < sampleReal) && (sampleReal > 0.5f)) {
sampleMax = sampleMax + 0.5f * (sampleReal - sampleMax); // new peak - with some filtering
} else {
if ((multAgc*sampleMax > agcZoneStop[AGC_preset]) && (soundAgc > 0))
sampleMax = sampleMax + 0.5 * (sampleReal - sampleMax); // over AGC Zone - get back quickly
sampleMax = sampleMax + 0.5f * (sampleReal - sampleMax); // over AGC Zone - get back quickly
else
sampleMax = sampleMax * agcSampleDecay[AGC_preset]; // signal to zero --> 5-8sec
}
if (sampleMax < 0.5) sampleMax = 0.0;
if (sampleMax < 0.5f) sampleMax = 0.0f;
sampleAvg = ((sampleAvg * 15.0) + sampleAdj) / 16.0; // Smooth it out over the last 16 samples.
sampleAvg = ((sampleAvg * 15.0f) + sampleAdj) / 16.0f; // Smooth it out over the last 16 samples.
/*---------DEBUG---------*/
DEBUGSR_PRINT("\t"); DEBUGSR_PRINT(sample);
@ -685,6 +683,7 @@ class AudioReactive : public Usermod {
}
} // getSample()
/*
* A simple averaging multiplier to automatically adjust sound sensitivity.
*/
@ -696,17 +695,17 @@ class AudioReactive : public Usermod {
float lastMultAgc = multAgc;
float tmpAgc;
if(fabs(sampleAvg) < 2.0) {
if(fabs(sampleAvg) < 2.0f) {
tmpAgc = sampleAvg; // signal below squelch -> deliver silence
multAgc = multAgc * 0.95; // slightly decrease gain multiplier
multAgc = multAgc * 0.95f; // slightly decrease gain multiplier
} else {
multAgc = (sampleAvg < 1) ? targetAgc : targetAgc / sampleAvg; // Make the multiplier so that sampleAvg * multiplier = setpoint
}
if (multAgc < 0.5) multAgc = 0.5; // signal higher than 2*setpoint -> don't reduce it further
multAgc = (lastMultAgc*127.0 +multAgc) / 128.0; //apply some filtering to gain multiplier -> smoother transitions
if (multAgc < 0.5f) multAgc = 0.5f; // signal higher than 2*setpoint -> don't reduce it further
multAgc = (lastMultAgc*127.0f +multAgc) / 128.0f; //apply some filtering to gain multiplier -> smoother transitions
tmpAgc = (float)sample * multAgc; // apply gain to signal
if (tmpAgc <= (soundSquelch*1.2)) tmpAgc = sample; // check against squelch threshold - increased by 20% to avoid artefacts (ripples)
if (tmpAgc <= (soundSquelch*1.2f)) tmpAgc = sample; // check against squelch threshold - increased by 20% to avoid artefacts (ripples)
if (tmpAgc > 255) tmpAgc = 255;
sampleAgc = tmpAgc; // ONLY update sampleAgc ONCE because it's used elsewhere asynchronously!!!!
@ -714,6 +713,7 @@ class AudioReactive : public Usermod {
if (userVar0 > 255) userVar0 = 255;
} // agcAvg()
void transmitAudioData() {
if (!udpSyncConnected) return;
@ -852,7 +852,13 @@ class AudioReactive : public Usermod {
* Use it to initialize network interfaces
*/
void connected() {
//Serial.println("Connected to WiFi!");
if (audioSyncPort > 0 || (audioSyncEnabled & 0x03)) {
#ifndef ESP8266
udpSyncConnected = fftUdp.beginMulticast(IPAddress(239, 0, 0, 1), audioSyncPort);
#else
udpSyncConnected = fftUdp.beginMulticast(WiFi.localIP(), IPAddress(239, 0, 0, 1), audioSyncPort);
#endif
}
}
@ -871,8 +877,7 @@ class AudioReactive : public Usermod {
lastTime = millis();
}
if (!(audioSyncEnabled & (1 << 1))) { // Only run the sampling code IF we're not in Receive mode
lastTime = millis();
if (!(audioSyncEnabled & 0x02)) { // Only run the sampling code IF we're not in Receive mode
if (soundAgc > AGC_NUM_PRESETS) soundAgc = 0; // make sure that AGC preset is valid (to avoid array bounds violation)
getSample(); // Sample the microphone
agcAvg(); // Calculated the PI adjusted value as sampleAvg
@ -917,8 +922,8 @@ class AudioReactive : public Usermod {
last_kick_time = now_time;
}
int new_user_inputLevel = 128.0 * multAgc; // scale AGC multiplier so that "1" is at 128
if (multAgc > 1.0) new_user_inputLevel = 128.0 * (((multAgc - 1.0) / 4.0) +1.0); // compress range so we can show values up to 4
int new_user_inputLevel = 128.0f * multAgc; // scale AGC multiplier so that "1" is at 128
if (multAgc > 1.0f) new_user_inputLevel = 128.0f * (((multAgc - 1.0f) / 4.0f) +1.0f); // compress range so we can show values up to 4
new_user_inputLevel = MIN(MAX(new_user_inputLevel, 0),255);
// update user interfaces - restrict frequency to avoid flooding UI's with small changes
@ -939,19 +944,17 @@ class AudioReactive : public Usermod {
logAudio();
}
#endif
}
if (audioSyncEnabled & (1 << 0)) { // Only run the transmit code IF we're in Transmit mode
//Serial.println("Transmitting UDP Mic Packet");
if (audioSyncEnabled & 0x01) { // Only run the transmit code IF we're in Transmit mode
DEBUGSR_PRINTLN("Transmitting UDP Mic Packet");
EVERY_N_MILLIS(20) {
transmitAudioData();
}
}
// Begin UDP Microphone Sync
if (audioSyncEnabled & (1 << 1)) { // Only run the audio listener code if we're in Receive mode
if (audioSyncEnabled & 0x02) { // Only run the audio listener code if we're in Receive mode
if (millis()-lastTime > delayMs) {
if (udpSyncConnected) {
//Serial.println("Checking for UDP Microphone Packet");
@ -1003,7 +1006,6 @@ class AudioReactive : public Usermod {
}
bool getUMData(um_data_t **data) {
if (!data) return false; // no pointer provided by caller -> exit
*data = &um_data;
@ -1042,6 +1044,7 @@ class AudioReactive : public Usermod {
}
*/
/*
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
@ -1054,6 +1057,7 @@ class AudioReactive : public Usermod {
}
*/
/*
* addToConfig() can be used to add custom persistent settings to the cfg.json file in the "um" (usermod) object.
* It will be called by WLED when settings are actually saved (for example, LED settings are saved)
@ -1092,10 +1096,26 @@ class AudioReactive : public Usermod {
void addToConfig(JsonObject& root)
{
JsonObject top = root.createNestedObject(FPSTR(_name));
JsonArray pinArray = top.createNestedArray("pin");
pinArray.add(audioPin);
top[F("audio_pin")] = audioPin;
//...
JsonObject amic = top.createNestedObject(FPSTR(_analogmic));
top["pin"] = audioPin;
JsonObject dmic = top.createNestedObject(FPSTR(_digitalmic));
dmic[F("type")] = dmType;
JsonArray pinArray = dmic.createNestedArray("pin");
pinArray.add(i2ssdPin);
pinArray.add(i2swsPin);
pinArray.add(i2sckPin);
JsonObject cfg = top.createNestedObject("cfg");
cfg[F("squelch")] = soundSquelch;
cfg[F("gain")] = sampleGain;
cfg[F("AGC")] = soundAgc;
JsonObject sync = top.createNestedObject("sync");
sync[F("port")] = audioSyncPort;
sync[F("send")] = (bool) (audioSyncEnabled & 0x01);
sync[F("receive")] = (bool) (audioSyncEnabled & 0x02);
}
@ -1116,26 +1136,29 @@ class AudioReactive : public Usermod {
*/
bool readFromConfig(JsonObject& root)
{
// default settings values could be set here (or below using the 3-argument getJsonValue()) instead of in the class definition or constructor
// setting them inside readFromConfig() is slightly more robust, handling the rare but plausible use case of single value being missing after boot (e.g. if the cfg.json was manually edited and a value was removed)
JsonObject top = root[FPSTR(_name)];
bool configComplete = !top.isNull();
configComplete &= getJsonValue(top[F("audio_pin")], audioPin);
/*
configComplete &= getJsonValue(top["testBool"], testBool);
configComplete &= getJsonValue(top["testULong"], testULong);
configComplete &= getJsonValue(top["testFloat"], testFloat);
configComplete &= getJsonValue(top["testString"], testString);
configComplete &= getJsonValue(top[FPSTR(_analogmic)]["pin"], audioPin);
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["type"], dmType);
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][0], i2ssdPin);
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][1], i2swsPin);
configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][2], i2sckPin);
configComplete &= getJsonValue(top["cfg"][F("squelch")], soundSquelch);
configComplete &= getJsonValue(top["cfg"][F("gain")], sampleGain);
configComplete &= getJsonValue(top["cfg"][F("AGC")], soundAgc);
configComplete &= getJsonValue(top["sync"][F("port")], audioSyncPort);
bool send = audioSyncEnabled & 0x01;
bool receive = audioSyncEnabled & 0x02;
configComplete &= getJsonValue(top["sync"][F("send")], send);
configComplete &= getJsonValue(top["sync"][F("receive")], receive);
audioSyncEnabled = send | (receive << 1);
// A 3-argument getJsonValue() assigns the 3rd argument as a default value if the Json value is missing
configComplete &= getJsonValue(top["testInt"], testInt, 42);
configComplete &= getJsonValue(top["testLong"], testLong, -42424242);
configComplete &= getJsonValue(top["pin"][0], testPins[0], -1);
configComplete &= getJsonValue(top["pin"][1], testPins[1], -1);
*/
return configComplete;
}
@ -1163,3 +1186,5 @@ class AudioReactive : public Usermod {
// strings to reduce flash memory usage (used more than twice)
const char AudioReactive::_name[] PROGMEM = "AudioReactive";
const char AudioReactive::_analogmic[] PROGMEM = "analogmic";
const char AudioReactive::_digitalmic[] PROGMEM = "digitalmic";