2D Waverly audio reactive.

This commit is contained in:
Blaz Kristan 2022-06-12 22:17:17 +02:00
parent 922a3631ae
commit cc995ecef8
2 changed files with 76 additions and 62 deletions

View File

@ -101,7 +101,7 @@ const uint16_t samples = 512; // This value MUST ALWAYS be a p
//unsigned int sampling_period_us; //unsigned int sampling_period_us;
//unsigned long microseconds; //unsigned long microseconds;
static AudioSource *audioSource; static AudioSource *audioSource = nullptr;
static byte soundSquelch = 10; // default squelch value for volume reactive routines static byte soundSquelch = 10; // default squelch value for volume reactive routines
static byte sampleGain = 1; // default sample gain static byte sampleGain = 1; // default sample gain
@ -162,7 +162,7 @@ void FFTcode(void * parameter) {
// Only run the FFT computing code if we're not in Receive mode // Only run the FFT computing code if we're not in Receive mode
if (audioSyncEnabled & 0x02) continue; if (audioSyncEnabled & 0x02) continue;
audioSource->getSamples(vReal, samplesFFT); if (audioSource) audioSource->getSamples(vReal, samplesFFT);
// old code - Last sample in vReal is our current mic sample // old code - Last sample in vReal is our current mic sample
//micDataSm = (uint16_t)vReal[samples - 1]; // will do a this a bit later //micDataSm = (uint16_t)vReal[samples - 1]; // will do a this a bit later
@ -739,7 +739,7 @@ class AudioReactive : public Usermod {
// usermod exchangeable data // usermod exchangeable data
// we will assign all usermod exportable data here as pointers to original variables or arrays and allocate memory for pointers // we will assign all usermod exportable data here as pointers to original variables or arrays and allocate memory for pointers
um_data = new um_data_t; um_data = new um_data_t;
um_data->u_size = 8; um_data->u_size = 11;
um_data->u_type = new um_types_t[um_data->u_size]; um_data->u_type = new um_types_t[um_data->u_size];
um_data->u_data = new void*[um_data->u_size]; um_data->u_data = new void*[um_data->u_size];
um_data->u_data[0] = &maxVol; um_data->u_data[0] = &maxVol;
@ -758,25 +758,20 @@ class AudioReactive : public Usermod {
um_data->u_type[6] = UMT_DOUBLE; um_data->u_type[6] = UMT_DOUBLE;
um_data->u_data[7] = &FFT_Magnitude; um_data->u_data[7] = &FFT_Magnitude;
um_data->u_type[7] = UMT_DOUBLE; um_data->u_type[7] = UMT_DOUBLE;
um_data->u_data[8] = &sampleAvg;
um_data->u_type[8] = UMT_FLOAT;
um_data->u_data[9] = &soundAgc;
um_data->u_type[9] = UMT_BYTE;
um_data->u_data[10] = &sampleAgc;
um_data->u_type[10] = UMT_FLOAT;
//... //...
// these are values used by effects in soundreactive fork // these are values used by effects in soundreactive fork
//uint8_t *fftResult = um_data->;
//float *fftAvg = um_data->;
//float *fftBin = um_data->;
//float *fftCalc = um_data->;
//double FFT_MajorPeak = um_data->;
//double FFT_Magnitude = um_data->;
//float sampleAgc = um_data->;
//float sampleReal = um_data->; //float sampleReal = um_data->;
//float multAgc = um_data->; //float multAgc = um_data->;
//float sampleAvg = um_data->;
//int16_t sample = um_data->;
//int16_t rawSampleAgc = um_data->; //int16_t rawSampleAgc = um_data->;
//bool samplePeak = um_data->; //bool samplePeak = um_data->;
//uint8_t squelch = um_data->; //uint8_t squelch = um_data->;
//uint8_t soundSquelch = um_data->; //uint8_t soundSquelch = um_data->;
//uint8_t soundAgc = um_data->;
//uint8_t maxVol = um_data->;
//uint8_t binNum = um_data->; //uint8_t binNum = um_data->;
//uint16_t *myVals = um_data->; //uint16_t *myVals = um_data->;
//int16_t sample = um_data->; //int16_t sample = um_data->;
@ -788,43 +783,43 @@ class AudioReactive : public Usermod {
delay(100); // Give that poor microphone some time to setup. delay(100); // Give that poor microphone some time to setup.
switch (dmType) { switch (dmType) {
case 1: case 1:
DEBUGSR_PRINTLN("AS: Generic I2S Microphone."); DEBUGSR_PRINTLN(F("AS: Generic I2S Microphone."));
audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF); audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF);
delay(100); delay(100);
audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin); if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin);
break; break;
case 2: case 2:
DEBUGSR_PRINTLN("AS: ES7243 Microphone."); DEBUGSR_PRINTLN(F("AS: ES7243 Microphone."));
audioSource = new ES7243(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF); audioSource = new ES7243(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF);
delay(100); delay(100);
audioSource->initialize(sdaPin, sclPin, i2swsPin, i2ssdPin, i2sckPin); if (audioSource) audioSource->initialize(sdaPin, sclPin, i2swsPin, i2ssdPin, i2sckPin);
break; break;
case 3: case 3:
DEBUGSR_PRINTLN("AS: SPH0645 Microphone"); DEBUGSR_PRINTLN(F("AS: SPH0645 Microphone"));
audioSource = new SPH0654(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF); audioSource = new SPH0654(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF);
delay(100); delay(100);
audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin); audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin);
break; break;
case 4: case 4:
DEBUGSR_PRINTLN("AS: Generic I2S Microphone with Master Clock"); DEBUGSR_PRINTLN(F("AS: Generic I2S Microphone with Master Clock"));
audioSource = new I2SSourceWithMasterClock(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF); audioSource = new I2SSourceWithMasterClock(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF);
delay(100); delay(100);
audioSource->initialize(mclkPin, i2swsPin, i2ssdPin, i2sckPin); if (audioSource) audioSource->initialize(mclkPin, i2swsPin, i2ssdPin, i2sckPin);
break; break;
case 5: case 5:
DEBUGSR_PRINTLN("AS: I2S PDM Microphone"); DEBUGSR_PRINTLN(F("AS: I2S PDM Microphone"));
audioSource = new I2SPdmSource(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF); audioSource = new I2SPdmSource(SAMPLE_RATE, BLOCK_SIZE, 0, 0xFFFFFFFF);
delay(100); delay(100);
audioSource->initialize(i2swsPin, i2ssdPin); if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin);
break; break;
case 0: case 0:
default: default:
DEBUGSR_PRINTLN("AS: Analog Microphone."); DEBUGSR_PRINTLN(F("AS: Analog Microphone."));
// we don't do the down-shift by 16bit any more // we don't do the down-shift by 16bit any more
//audioSource = new I2SAdcSource(SAMPLE_RATE, BLOCK_SIZE, -4, 0x0FFF); // request upscaling to 16bit - still produces too much noise //audioSource = new I2SAdcSource(SAMPLE_RATE, BLOCK_SIZE, -4, 0x0FFF); // request upscaling to 16bit - still produces too much noise
audioSource = new I2SAdcSource(SAMPLE_RATE, BLOCK_SIZE, 0, 0x0FFF); // keep at 12bit - less noise audioSource = new I2SAdcSource(SAMPLE_RATE, BLOCK_SIZE, 0, 0x0FFF); // keep at 12bit - less noise
delay(100); delay(100);
audioSource->initialize(audioPin); if (audioSource) audioSource->initialize(audioPin);
break; break;
} }

View File

@ -5478,43 +5478,6 @@ uint16_t WS2812FX::mode_2Dtartan(void) { // By: Elliott Kember https:/
static const char *_data_FX_MODE_TARTAN PROGMEM = "2D Tartan@X scale,Y scale;;!"; static const char *_data_FX_MODE_TARTAN PROGMEM = "2D Tartan@X scale,Y scale;;!";
/////////////////////////
// * 2D Waverly //
/////////////////////////
uint16_t WS2812FX::mode_2DWaverly(void) { // By: Stepko, https://editor.soulmatelights.com/gallery/652-wave , modified by Andrew Tuline
if (!isMatrix) return mode_static(); // not a 2D set-up
const uint16_t cols = SEGMENT.virtualWidth();
const uint16_t rows = SEGMENT.virtualHeight();
const uint16_t dataSize = sizeof(CRGB) * SEGMENT.width() * SEGMENT.height(); // using width*height prevents reallocation if mirroring is enabled
if (!SEGENV.allocateData(dataSize)) return mode_static(); //allocation failed
CRGB *leds = reinterpret_cast<CRGB*>(SEGENV.data);
if (SEGENV.call == 0) fill_solid(leds, CRGB::Black);
fadeToBlackBy(leds, SEGMENT.speed);
long t = now / 2;
for (uint16_t i = 0; i < cols; i++) {
//uint8_t tmpSound = (soundAgc) ? sampleAgc : sampleAvg;
uint16_t thisVal = /*tmpSound*/((SEGMENT.intensity>>2)+1) * inoise8(i * 45 , t , t)/64;
uint16_t thisMax = map(thisVal, 0, 512, 0, rows);
for (uint16_t j = 0; j < thisMax; j++) {
leds[XY(i, j)] += ColorFromPalette(currentPalette, map(j, 0, thisMax, 250, 0), 255, LINEARBLEND);
leds[XY((cols - 1) - i, (rows - 1) - j)] += ColorFromPalette(currentPalette, map(j, 0, thisMax, 250, 0), 255, LINEARBLEND);
}
}
blur2d(leds, 16);
setPixels(leds);
return FRAMETIME;
} // mode_2DWaverly()
static const char *_data_FX_MODE_WAVERLY PROGMEM = "2D Waverly@Fade rate,Sensitivity;;!";
///////////////////////// /////////////////////////
// 2D Akemi // // 2D Akemi //
///////////////////////// /////////////////////////
@ -6010,6 +5973,62 @@ uint16_t WS2812FX::mode_2Ddriftrose(void) {
static const char *_data_FX_MODE_DRIFT_ROSE PROGMEM = "2D Drift Rose@Fade,Blur;;"; static const char *_data_FX_MODE_DRIFT_ROSE PROGMEM = "2D Drift Rose@Fade,Blur;;";
///////////////////////////////////////////////////////////////////////////////
//************************* audio routines **********************************
/////////////////////////
// * 2D Waverly //
/////////////////////////
// By: Stepko, https://editor.soulmatelights.com/gallery/652-wave , modified by Andrew Tuline
uint16_t WS2812FX::mode_2DWaverly(void) {
if (!isMatrix) return mode_static(); // not a 2D set-up
const uint16_t cols = SEGMENT.virtualWidth();
const uint16_t rows = SEGMENT.virtualHeight();
const uint16_t dataSize = sizeof(CRGB) * SEGMENT.width() * SEGMENT.height(); // using width*height prevents reallocation if mirroring is enabled
if (!SEGENV.allocateData(dataSize)) return mode_static(); //allocation failed
CRGB *leds = reinterpret_cast<CRGB*>(SEGENV.data);
if (SEGENV.call == 0) {
fill_solid(leds, CRGB::Black);
}
um_data_t *um_data;
uint8_t *soundAgc = nullptr;
float *sampleAgc, *sampleAvg;
if (usermods.getUMData(&um_data, USERMOD_ID_AUDIOREACTIVE)) {
soundAgc = (uint8_t*)um_data->u_data[9];
sampleAgc = (float*)um_data->u_data[10];
sampleAvg = (float*)um_data->u_data[8];
}
fadeToBlackBy(leds, SEGMENT.speed);
long t = millis() / 2;
for (uint16_t i = 0; i < cols; i++) {
uint16_t thisVal = (1 + SEGMENT.intensity/64) * inoise8(i * 45 , t , t)/2;
// use audio if available
if (um_data && soundAgc) {
thisVal /= 32; // reduce intensity of inoise8()
thisVal *= (*soundAgc) ? *sampleAgc : *sampleAvg;
}
uint16_t thisMax = map(thisVal, 0, 512, 0, rows);
for (uint16_t j = 0; j < thisMax; j++) {
leds[XY(i, j)] += ColorFromPalette(currentPalette, map(j, 0, thisMax, 250, 0), 255, LINEARBLEND);
leds[XY((cols - 1) - i, (rows - 1) - j)] += ColorFromPalette(currentPalette, map(j, 0, thisMax, 250, 0), 255, LINEARBLEND);
}
}
blur2d(leds, 16);
setPixels(leds);
return FRAMETIME;
} // mode_2DWaverly()
static const char *_data_FX_MODE_WAVERLY PROGMEM = " ♪ 2D Waverly@Amplification,Sensitivity=64;;!";
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
// mode data // mode data
const char *WS2812FX::_modeData[MODE_COUNT] = { const char *WS2812FX::_modeData[MODE_COUNT] = {