#include "src/dependencies/timezone/Timezone.h" #include "wled.h" /* * Acquires time from NTP server */ Timezone* tz; #define TZ_UTC 0 #define TZ_UK 1 #define TZ_EUROPE_CENTRAL 2 #define TZ_EUROPE_EASTERN 3 #define TZ_US_EASTERN 4 #define TZ_US_CENTRAL 5 #define TZ_US_MOUNTAIN 6 #define TZ_US_ARIZONA 7 #define TZ_US_PACIFIC 8 #define TZ_CHINA 9 #define TZ_JAPAN 10 #define TZ_AUSTRALIA_EASTERN 11 #define TZ_NEW_ZEALAND 12 #define TZ_NORTH_KOREA 13 #define TZ_INDIA 14 #define TZ_SASKACHEWAN 15 #define TZ_AUSTRALIA_NORTHERN 16 #define TZ_AUSTRALIA_SOUTHERN 17 #define TZ_HAWAII 18 #define TZ_INIT 255 byte tzCurrent = TZ_INIT; //uninitialized void updateTimezone() { delete tz; TimeChangeRule tcrDaylight = {Last, Sun, Mar, 1, 0}; //UTC TimeChangeRule tcrStandard = tcrDaylight; //UTC switch (currentTimezone) { case TZ_UK : { tcrDaylight = {Last, Sun, Mar, 1, 60}; //British Summer Time tcrStandard = {Last, Sun, Oct, 2, 0}; //Standard Time break; } case TZ_EUROPE_CENTRAL : { tcrDaylight = {Last, Sun, Mar, 2, 120}; //Central European Summer Time tcrStandard = {Last, Sun, Oct, 3, 60}; //Central European Standard Time break; } case TZ_EUROPE_EASTERN : { tcrDaylight = {Last, Sun, Mar, 3, 180}; //East European Summer Time tcrStandard = {Last, Sun, Oct, 4, 120}; //East European Standard Time break; } case TZ_US_EASTERN : { tcrDaylight = {Second, Sun, Mar, 2, -240}; //EDT = UTC - 4 hours tcrStandard = {First, Sun, Nov, 2, -300}; //EST = UTC - 5 hours break; } case TZ_US_CENTRAL : { tcrDaylight = {Second, Sun, Mar, 2, -300}; //CDT = UTC - 5 hours tcrStandard = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours break; } case TZ_US_MOUNTAIN : { tcrDaylight = {Second, Sun, Mar, 2, -360}; //MDT = UTC - 6 hours tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours break; } case TZ_US_ARIZONA : { tcrDaylight = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours break; } case TZ_US_PACIFIC : { tcrDaylight = {Second, Sun, Mar, 2, -420}; //PDT = UTC - 7 hours tcrStandard = {First, Sun, Nov, 2, -480}; //PST = UTC - 8 hours break; } case TZ_CHINA : { tcrDaylight = {Last, Sun, Mar, 1, 480}; //CST = UTC + 8 hours tcrStandard = tcrDaylight; break; } case TZ_JAPAN : { tcrDaylight = {Last, Sun, Mar, 1, 540}; //JST = UTC + 9 hours tcrStandard = tcrDaylight; break; } case TZ_AUSTRALIA_EASTERN : { tcrDaylight = {Second, Sun, Oct, 2, 660}; //AEDT = UTC + 11 hours tcrStandard = {First, Sun, Apr, 3, 600}; //AEST = UTC + 10 hours break; } case TZ_NEW_ZEALAND : { tcrDaylight = {Second, Sun, Sep, 2, 780}; //NZDT = UTC + 13 hours tcrStandard = {First, Sun, Apr, 3, 720}; //NZST = UTC + 12 hours break; } case TZ_NORTH_KOREA : { tcrDaylight = {Last, Sun, Mar, 1, 510}; //Pyongyang Time = UTC + 8.5 hours tcrStandard = tcrDaylight; break; } case TZ_INDIA : { tcrDaylight = {Last, Sun, Mar, 1, 330}; //India Standard Time = UTC + 5.5 hours tcrStandard = tcrDaylight; break; } case TZ_SASKACHEWAN : { tcrDaylight = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours tcrStandard = tcrDaylight; break; } case TZ_AUSTRALIA_NORTHERN : { tcrStandard = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours tcrStandard = tcrDaylight; break; } case TZ_AUSTRALIA_SOUTHERN : { tcrDaylight = {First, Sun, Oct, 2, 630}; //ACDT = UTC + 10.5 hours tcrStandard = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours break; } case TZ_HAWAII : { tcrDaylight = {Last, Sun, Mar, 1, -600}; //HST = UTC - 10 hours tcrStandard = tcrDaylight; break; } } tzCurrent = currentTimezone; tz = new Timezone(tcrDaylight, tcrStandard); } void handleNetworkTime() { if (ntpEnabled && ntpConnected && millis() - ntpLastSyncTime > 50000000L && WLED_CONNECTED) { if (millis() - ntpPacketSentTime > 10000) { sendNTPPacket(); ntpPacketSentTime = millis(); } if (checkNTPResponse()) { ntpLastSyncTime = millis(); } } } void sendNTPPacket() { if (!ntpServerIP.fromString(ntpServerName)) //see if server is IP or domain { #ifdef ESP8266 WiFi.hostByName(ntpServerName, ntpServerIP, 750); #else WiFi.hostByName(ntpServerName, ntpServerIP); #endif } DEBUG_PRINTLN(F("send NTP")); byte pbuf[NTP_PACKET_SIZE]; memset(pbuf, 0, NTP_PACKET_SIZE); pbuf[0] = 0b11100011; // LI, Version, Mode pbuf[1] = 0; // Stratum, or type of clock pbuf[2] = 6; // Polling Interval pbuf[3] = 0xEC; // Peer Clock Precision // 8 bytes of zero for Root Delay & Root Dispersion pbuf[12] = 49; pbuf[13] = 0x4E; pbuf[14] = 49; pbuf[15] = 52; ntpUdp.beginPacket(ntpServerIP, 123); //NTP requests are to port 123 ntpUdp.write(pbuf, NTP_PACKET_SIZE); ntpUdp.endPacket(); } bool checkNTPResponse() { int cb = ntpUdp.parsePacket(); if (cb) { DEBUG_PRINT(F("NTP recv, l=")); DEBUG_PRINTLN(cb); byte pbuf[NTP_PACKET_SIZE]; ntpUdp.read(pbuf, NTP_PACKET_SIZE); // read the packet into the buffer unsigned long highWord = word(pbuf[40], pbuf[41]); unsigned long lowWord = word(pbuf[42], pbuf[43]); if (highWord == 0 && lowWord == 0) return false; unsigned long secsSince1900 = highWord << 16 | lowWord; DEBUG_PRINT(F("Unix time = ")); unsigned long epoch = secsSince1900 - 2208988799UL; //subtract 70 years -1sec (on avg. more precision) setTime(epoch); DEBUG_PRINTLN(epoch); if (countdownTime - now() > 0) countdownOverTriggered = false; return true; } return false; } void updateLocalTime() { if (currentTimezone != tzCurrent) updateTimezone(); unsigned long tmc = now()+ utcOffsetSecs; localTime = tz->toLocal(tmc); } void getTimeString(char* out) { updateLocalTime(); byte hr = hour(localTime); if (useAMPM) { if (hr > 11) hr -= 12; if (hr == 0) hr = 12; } sprintf_P(out,PSTR("%i-%i-%i, %02d:%02d:%02d"),year(localTime), month(localTime), day(localTime), hr, minute(localTime), second(localTime)); if (useAMPM) { strcat(out,(hour(localTime) > 11)? " PM":" AM"); } } void setCountdown() { if (currentTimezone != tzCurrent) updateTimezone(); countdownTime = tz->toUTC(getUnixTime(countdownHour, countdownMin, countdownSec, countdownDay, countdownMonth, countdownYear)); if (countdownTime - now() > 0) countdownOverTriggered = false; } //returns true if countdown just over bool checkCountdown() { unsigned long n = now(); if (countdownMode) localTime = countdownTime - n + utcOffsetSecs; if (n > countdownTime) { if (countdownMode) localTime = n - countdownTime + utcOffsetSecs; if (!countdownOverTriggered) { if (macroCountdown != 0) applyPreset(macroCountdown); countdownOverTriggered = true; return true; } } return false; } byte weekdayMondayFirst() { byte wd = weekday(localTime) -1; if (wd == 0) wd = 7; return wd; } void checkTimers() { if (lastTimerMinute != minute(localTime)) //only check once a new minute begins { lastTimerMinute = minute(localTime); // calculate sunrise and sunset at midnight (if longitude and latitude are set) if (((int)longitude || (int)latitude) && ((!hour(localTime) && !minute(localTime)) || (!sunrise && !sunset))) { struct tm tim_0; tim_0.tm_year = year(localTime)-1900; tim_0.tm_mon = month(localTime)-1; tim_0.tm_mday = day(localTime); tim_0.tm_sec = 0; tim_0.tm_isdst = 0; int minUTC = getSunriseUTC(year(localTime), month(localTime), day(localTime), latitude, longitude); if (minUTC) { // there is a sunrise tim_0.tm_hour = minUTC / 60; tim_0.tm_min = minUTC % 60; sunrise = tz->toLocal(mktime(&tim_0) - utcOffsetSecs); DEBUG_PRINTF("Sunrise: %02d:%02d\n", hour(sunrise), minute(sunrise)); } else { sunrise = 0; } minUTC = getSunriseUTC(year(localTime), month(localTime), day(localTime), latitude, longitude, true); if (minUTC) { // there is a sunset tim_0.tm_hour = minUTC / 60; tim_0.tm_min = minUTC % 60; sunset = tz->toLocal(mktime(&tim_0) - utcOffsetSecs); DEBUG_PRINTF("Sunset: %02d:%02d\n", hour(sunset), minute(sunset)); } else { sunset = 0; } } if (sunrise && sunset) daytime = difftime(localTime, sunrise) > 0 && difftime(localTime, sunset) < 0; DEBUG_PRINTF("Local time: %02d:%02d\n", hour(localTime), minute(localTime)); for (uint8_t i = 0; i < 8; i++) { if (timerMacro[i] != 0 && (timerHours[i] == hour(localTime) || timerHours[i] == 24) //if hour is set to 24, activate every hour && timerMinutes[i] == minute(localTime) && (timerWeekday[i] & 0x01) //timer is enabled && ((timerWeekday[i] >> weekdayMondayFirst()) & 0x01)) //timer should activate at current day of week { applyPreset(timerMacro[i]); } } // sunrise macro if (sunrise) { time_t tmp = sunrise + timerMinutes[8]*60; // NOTE: may not be ok DEBUG_PRINTF("Trigger time: %02d:%02d\n", hour(tmp), minute(tmp)); if (timerMacro[8] != 0 && hour(tmp) == hour(localTime) && minute(tmp) == minute(localTime) && (timerWeekday[8] & 0x01) //timer is enabled && ((timerWeekday[8] >> weekdayMondayFirst()) & 0x01)) //timer should activate at current day of week { applyPreset(timerMacro[8]); DEBUG_PRINTF("Sunrise macro %d triggered.",timerMacro[8]); } } // sunset macro if (sunset) { time_t tmp = sunset + timerMinutes[9]*60; // NOTE: may not be ok DEBUG_PRINTF("Trigger time: %02d:%02d\n", hour(tmp), minute(tmp)); if (timerMacro[9] != 0 && hour(tmp) == hour(localTime) && minute(tmp) == minute(localTime) && (timerWeekday[9] & 0x01) //timer is enabled && ((timerWeekday[9] >> weekdayMondayFirst()) & 0x01)) //timer should activate at current day of week { applyPreset(timerMacro[9]); DEBUG_PRINTF("Sunset macro %d triggered.",timerMacro[9]); } } } } #define ZENITH -0.83 // get sunrise (or sunset) time (in minutes) for a given day at a given geo location int getSunriseUTC(int year, int month, int day, float lat, float lon, bool sunset) { //1. first calculate the day of the year float N1 = floor(275 * month / 9); float N2 = floor((month + 9) / 12); float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3)); float N = N1 - (N2 * N3) + day - 30; //2. convert the longitude to hour value and calculate an approximate time float lngHour = lon / 15.0; float t = N + (((sunset ? 18 : 6) - lngHour) / 24); //3. calculate the Sun's mean anomaly float M = (0.9856 * t) - 3.289; //4. calculate the Sun's true longitude float L = fmod(M + (1.916 * sin(DEG_TO_RAD*M)) + (0.020 * sin(2*DEG_TO_RAD*M)) + 282.634, 360.0); //5a. calculate the Sun's right ascension float RA = fmod(RAD_TO_DEG*atan(0.91764 * tan(DEG_TO_RAD*L)), 360.0); //5b. right ascension value needs to be in the same quadrant as L float Lquadrant = floor( L/90) * 90; float RAquadrant = floor(RA/90) * 90; RA = RA + (Lquadrant - RAquadrant); //5c. right ascension value needs to be converted into hours RA /= 15.; //6. calculate the Sun's declination float sinDec = 0.39782 * sin(DEG_TO_RAD*L); float cosDec = cos(asin(sinDec)); //7a. calculate the Sun's local hour angle float cosH = (sin(DEG_TO_RAD*ZENITH) - (sinDec * sin(DEG_TO_RAD*lat))) / (cosDec * cos(DEG_TO_RAD*lat)); if (cosH > 1 && !sunset) return 0; // the sun never rises on this location (on the specified date) if (cosH < -1 && sunset) return 0; // the sun never sets on this location (on the specified date) //7b. finish calculating H and convert into hours float H = sunset ? RAD_TO_DEG*acos(cosH) : 360 - RAD_TO_DEG*acos(cosH); H /= 15.; //8. calculate local mean time of rising/setting float T = H + RA - (0.06571 * t) - 6.622; //9. adjust back to UTC float UT = fmod(T - lngHour, 24.0); // return in minutes from midnight return UT*60; }