#define WLED_DEFINE_GLOBAL_VARS //only in one source file, wled.cpp! #include "wled.h" #include "wled_ethernet.h" #include #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET) #include "soc/soc.h" #include "soc/rtc_cntl_reg.h" #endif /* * Main WLED class implementation. Mostly initialization and connection logic */ WLED::WLED() { } // turns all LEDs off and restarts ESP void WLED::reset() { briT = 0; #ifdef WLED_ENABLE_WEBSOCKETS ws.closeAll(1012); #endif long dly = millis(); while (millis() - dly < 450) { yield(); // enough time to send response to client } applyBri(); DEBUG_PRINTLN(F("WLED RESET")); ESP.restart(); } void WLED::loop() { #ifdef WLED_DEBUG static unsigned long maxUsermodMillis = 0; static uint16_t avgUsermodMillis = 0; static unsigned long maxStripMillis = 0; static uint16_t avgStripMillis = 0; #endif handleTime(); handleIR(); // 2nd call to function needed for ESP32 to return valid results -- should be good for ESP8266, too handleConnection(); handleSerial(); handleNotifications(); handleTransitions(); #ifdef WLED_ENABLE_DMX handleDMX(); #endif userLoop(); #ifdef WLED_DEBUG unsigned long usermodMillis = millis(); #endif usermods.loop(); #ifdef WLED_DEBUG usermodMillis = millis() - usermodMillis; avgUsermodMillis += usermodMillis; if (usermodMillis > maxUsermodMillis) maxUsermodMillis = usermodMillis; #endif yield(); handleIO(); handleIR(); #ifndef WLED_DISABLE_ALEXA handleAlexa(); #endif yield(); if (doSerializeConfig) serializeConfig(); if (doReboot && !doInitBusses) // if busses have to be inited & saved, wait until next iteration reset(); if (doCloseFile) { closeFile(); yield(); } if (!realtimeMode || realtimeOverride || (realtimeMode && useMainSegmentOnly)) // block stuff if WARLS/Adalight is enabled { if (apActive) dnsServer.processNextRequest(); #ifndef WLED_DISABLE_OTA if (WLED_CONNECTED && aOtaEnabled && !otaLock && correctPIN) ArduinoOTA.handle(); #endif handleNightlight(); handlePlaylist(); yield(); #ifndef WLED_DISABLE_HUESYNC handleHue(); yield(); #endif #ifndef WLED_DISABLE_BLYNK handleBlynk(); yield(); #endif handlePresets(); yield(); #ifdef WLED_DEBUG unsigned long stripMillis = millis(); #endif if (!offMode || strip.isOffRefreshRequired()) strip.service(); #ifdef ESP8266 else if (!noWifiSleep) delay(1); //required to make sure ESP enters modem sleep (see #1184) #endif #ifdef WLED_DEBUG stripMillis = millis() - stripMillis; if (stripMillis > 50) DEBUG_PRINTLN("Slow strip."); avgStripMillis += stripMillis; if (stripMillis > maxStripMillis) maxStripMillis = stripMillis; #endif } yield(); #ifdef ESP8266 MDNS.update(); #endif //millis() rolls over every 50 days if (lastMqttReconnectAttempt > millis()) { rolloverMillis++; lastMqttReconnectAttempt = 0; ntpLastSyncTime = 0; strip.restartRuntime(); } if (millis() - lastMqttReconnectAttempt > 30000 || lastMqttReconnectAttempt == 0) { // lastMqttReconnectAttempt==0 forces immediate broadcast lastMqttReconnectAttempt = millis(); initMqtt(); yield(); // refresh WLED nodes list refreshNodeList(); if (nodeBroadcastEnabled) sendSysInfoUDP(); yield(); } // 15min PIN time-out if (strlen(settingsPIN)>0 && millis() - lastEditTime > 900000) { correctPIN = false; createEditHandler(false); } //LED settings have been saved, re-init busses //This code block causes severe FPS drop on ESP32 with the original "if (busConfigs[0] != nullptr)" conditional. Investigate! if (doInitBusses) { doInitBusses = false; DEBUG_PRINTLN(F("Re-init busses.")); bool aligned = strip.checkSegmentAlignment(); //see if old segments match old bus(ses) busses.removeAll(); uint32_t mem = 0; for (uint8_t i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) { if (busConfigs[i] == nullptr) break; mem += BusManager::memUsage(*busConfigs[i]); if (mem <= MAX_LED_MEMORY) { busses.add(*busConfigs[i]); } delete busConfigs[i]; busConfigs[i] = nullptr; } strip.finalizeInit(); loadLedmap = 0; if (aligned) strip.makeAutoSegments(); else strip.fixInvalidSegments(); yield(); serializeConfig(); } if (loadLedmap >= 0) { strip.deserializeMap(loadLedmap); loadLedmap = -1; } yield(); handleWs(); handleStatusLED(); // DEBUG serial logging (every 30s) #ifdef WLED_DEBUG if (millis() - debugTime > 29999) { DEBUG_PRINTLN(F("---DEBUG INFO---")); DEBUG_PRINT(F("Runtime: ")); DEBUG_PRINTLN(millis()); DEBUG_PRINT(F("Unix time: ")); toki.printTime(toki.getTime()); DEBUG_PRINT(F("Free heap: ")); DEBUG_PRINTLN(ESP.getFreeHeap()); #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_PSRAM) if (psramFound()) { DEBUG_PRINT(F("Total PSRAM: ")); DEBUG_PRINT(ESP.getPsramSize()/1024); DEBUG_PRINTLN("kB"); DEBUG_PRINT(F("Free PSRAM: ")); DEBUG_PRINT(ESP.getFreePsram()/1024); DEBUG_PRINTLN("kB"); } else DEBUG_PRINTLN(F("No PSRAM")); #endif DEBUG_PRINT(F("Wifi state: ")); DEBUG_PRINTLN(WiFi.status()); if (WiFi.status() != lastWifiState) { wifiStateChangedTime = millis(); } lastWifiState = WiFi.status(); DEBUG_PRINT(F("State time: ")); DEBUG_PRINTLN(wifiStateChangedTime); DEBUG_PRINT(F("NTP last sync: ")); DEBUG_PRINTLN(ntpLastSyncTime); DEBUG_PRINT(F("Client IP: ")); DEBUG_PRINTLN(Network.localIP()); if (loops > 0) { // avoid division by zero DEBUG_PRINT(F("Loops/sec: ")); DEBUG_PRINTLN(loops / 30); DEBUG_PRINT(F("UM time[ms]: ")); DEBUG_PRINT(avgUsermodMillis/loops); DEBUG_PRINT("/");DEBUG_PRINTLN(maxUsermodMillis); DEBUG_PRINT(F("Strip time[ms]: ")); DEBUG_PRINT(avgStripMillis/loops); DEBUG_PRINT("/"); DEBUG_PRINTLN(maxStripMillis); } strip.printSize(); loops = 0; maxUsermodMillis = 0; maxStripMillis = 0; avgUsermodMillis = 0; avgStripMillis = 0; debugTime = millis(); } loops++; #endif // WLED_DEBUG toki.resetTick(); #if WLED_WATCHDOG_TIMEOUT > 0 // we finished our mainloop, reset the watchdog timer if (!strip.isUpdating()) #ifdef ARDUINO_ARCH_ESP32 esp_task_wdt_reset(); #else ESP.wdtFeed(); #endif #endif } void WLED::enableWatchdog() { #if WLED_WATCHDOG_TIMEOUT > 0 #ifdef ARDUINO_ARCH_ESP32 esp_err_t watchdog = esp_task_wdt_init(WLED_WATCHDOG_TIMEOUT, true); DEBUG_PRINT(F("Watchdog enabled: ")); if (watchdog == ESP_OK) { DEBUG_PRINTLN(F("OK")); } else { DEBUG_PRINTLN(watchdog); return; } esp_task_wdt_add(NULL); #else ESP.wdtEnable(WLED_WATCHDOG_TIMEOUT * 1000); #endif #endif } void WLED::disableWatchdog() { #if WLED_WATCHDOG_TIMEOUT > 0 DEBUG_PRINTLN(F("Watchdog: disabled")); #ifdef ARDUINO_ARCH_ESP32 esp_task_wdt_delete(NULL); #else ESP.wdtDisable(); #endif #endif } void WLED::setup() { #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET) WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); //disable brownout detection #endif Serial.begin(115200); #if !ARDUINO_USB_CDC_ON_BOOT Serial.setTimeout(50); // this causes troubles on new MCUs that have a "virtual" USB Serial (HWCDC) #else #endif #if defined(WLED_DEBUG) && defined(ARDUINO_ARCH_ESP32) && (defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3) || ARDUINO_USB_CDC_ON_BOOT) delay(2500); // allow CDC USB serial to initialise #endif #if !defined(WLED_DEBUG) && defined(ARDUINO_ARCH_ESP32) && !defined(WLED_DEBUG_HOST) && ARDUINO_USB_CDC_ON_BOOT Serial.setDebugOutput(false); // switch off kernel messages when using USBCDC #endif DEBUG_PRINTLN(); DEBUG_PRINT(F("---WLED ")); DEBUG_PRINT(versionString); DEBUG_PRINT(" "); DEBUG_PRINT(VERSION); DEBUG_PRINTLN(F(" INIT---")); #ifdef ARDUINO_ARCH_ESP32 DEBUG_PRINT(F("esp32 ")); DEBUG_PRINTLN(ESP.getSdkVersion()); #if defined(ESP_ARDUINO_VERSION) //DEBUG_PRINTF(F("arduino-esp32 0x%06x\n"), ESP_ARDUINO_VERSION); DEBUG_PRINTF("arduino-esp32 v%d.%d.%d\n", int(ESP_ARDUINO_VERSION_MAJOR), int(ESP_ARDUINO_VERSION_MINOR), int(ESP_ARDUINO_VERSION_PATCH)); // availeable since v2.0.0 #else DEBUG_PRINTLN(F("arduino-esp32 v1.0.x\n")); // we can't say in more detail. #endif DEBUG_PRINT(F("CPU: ")); DEBUG_PRINT(ESP.getChipModel()); DEBUG_PRINT(F(" rev.")); DEBUG_PRINT(ESP.getChipRevision()); DEBUG_PRINT(F(", ")); DEBUG_PRINT(ESP.getChipCores()); DEBUG_PRINT(F(" core(s)")); DEBUG_PRINT(F(", ")); DEBUG_PRINT(ESP.getCpuFreqMHz()); DEBUG_PRINTLN(F("MHz.")); DEBUG_PRINT(F("FLASH: ")); DEBUG_PRINT((ESP.getFlashChipSize()/1024)/1024); DEBUG_PRINT(F("MB, Mode ")); DEBUG_PRINT(ESP.getFlashChipMode()); #ifdef WLED_DEBUG switch (ESP.getFlashChipMode()) { // missing: Octal modes case FM_QIO: DEBUG_PRINT(F(" (QIO)")); break; case FM_QOUT: DEBUG_PRINT(F(" (QOUT)"));break; case FM_DIO: DEBUG_PRINT(F(" (DIO)")); break; case FM_DOUT: DEBUG_PRINT(F(" (DOUT)"));break; default: break; } #endif DEBUG_PRINT(F(", speed ")); DEBUG_PRINT(ESP.getFlashChipSpeed()/1000000);DEBUG_PRINTLN(F("MHz.")); #else DEBUG_PRINT(F("esp8266 ")); DEBUG_PRINTLN(ESP.getCoreVersion()); #endif DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap()); #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_PSRAM) if (psramFound()) { #if !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32S3) // GPIO16/GPIO17 reserved for SPI RAM managed_pin_type pins[2] = { {16, true}, {17, true} }; pinManager.allocateMultiplePins(pins, 2, PinOwner::SPI_RAM); #elif defined(CONFIG_IDF_TARGET_ESP32S3) // S3: add GPIO 33-37 for "octal" PSRAM managed_pin_type pins[5] = { {33, true}, {34, true}, {35, true}, {36, true}, {37, true} }; pinManager.allocateMultiplePins(pins, 5, PinOwner::SPI_RAM); #endif DEBUG_PRINT(F("Total PSRAM: ")); DEBUG_PRINT(ESP.getPsramSize()/1024); DEBUG_PRINTLN("kB"); DEBUG_PRINT(F("Free PSRAM : ")); DEBUG_PRINT(ESP.getFreePsram()/1024); DEBUG_PRINTLN("kB"); } else DEBUG_PRINTLN(F("No PSRAM found.")); #endif #if defined(ARDUINO_ARCH_ESP32) && defined(BOARD_HAS_PSRAM) && !defined(WLED_USE_PSRAM) DEBUG_PRINTLN(F("PSRAM not used.")); #endif //DEBUG_PRINT(F("LEDs inited. heap usage ~")); //DEBUG_PRINTLN(heapPreAlloc - ESP.getFreeHeap()); #ifdef WLED_DEBUG pinManager.allocatePin(hardwareTX, true, PinOwner::DebugOut); // TX (GPIO1 on ESP32) reserved for debug output #endif #ifdef WLED_ENABLE_DMX //reserve GPIO2 as hardcoded DMX pin pinManager.allocatePin(2, true, PinOwner::DMX); #endif DEBUG_PRINTLN(F("Registering usermods ...")); registerUsermods(); for (uint8_t i=1; i=0 if (!pinManager.isPinAllocated(STATUSLED)) { // NOTE: Special case: The status LED should *NOT* be allocated. // See comments in handleStatusLed(). pinMode(STATUSLED, OUTPUT); } #endif DEBUG_PRINTLN(F("Initializing strip")); beginStrip(); DEBUG_PRINTLN(F("Usermods setup")); userSetup(); usermods.setup(); if (strcmp(clientSSID, DEFAULT_CLIENT_SSID) == 0) showWelcomePage = true; WiFi.persistent(false); #ifdef WLED_USE_ETHERNET WiFi.onEvent(WiFiEvent); #endif #ifdef WLED_ENABLE_ADALIGHT //Serial RX (Adalight, Improv, Serial JSON) only possible if GPIO3 unused //Serial TX (Debug, Improv, Serial JSON) only possible if GPIO1 unused if (!pinManager.isPinAllocated(hardwareRX) && !pinManager.isPinAllocated(hardwareTX)) { Serial.println(F("Ada")); } #endif // fill in unique mdns default if (strcmp(cmDNS, "x") == 0) sprintf_P(cmDNS, PSTR("wled-%*s"), 6, escapedMac.c_str() + 6); if (mqttDeviceTopic[0] == 0) sprintf_P(mqttDeviceTopic, PSTR("wled/%*s"), 6, escapedMac.c_str() + 6); if (mqttClientID[0] == 0) sprintf_P(mqttClientID, PSTR("WLED-%*s"), 6, escapedMac.c_str() + 6); #ifdef WLED_ENABLE_ADALIGHT if (Serial.available() > 0 && Serial.peek() == 'I') handleImprovPacket(); #endif strip.service(); // why? #ifndef WLED_DISABLE_OTA if (aOtaEnabled) { ArduinoOTA.onStart([]() { #ifdef ESP8266 wifi_set_sleep_type(NONE_SLEEP_T); #endif WLED::instance().disableWatchdog(); DEBUG_PRINTLN(F("Start ArduinoOTA")); }); ArduinoOTA.onError([](ota_error_t error) { // reenable watchdog on failed update WLED::instance().enableWatchdog(); }); if (strlen(cmDNS) > 0) ArduinoOTA.setHostname(cmDNS); } #endif #ifdef WLED_ENABLE_DMX initDMX(); #endif #ifdef WLED_ENABLE_ADALIGHT if (Serial.available() > 0 && Serial.peek() == 'I') handleImprovPacket(); #endif // HTTP server page init initServer(); enableWatchdog(); #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET) WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1); //enable brownout detector #endif } void WLED::beginStrip() { // Initialize NeoPixel Strip and button strip.finalizeInit(); // busses created during deserializeConfig() strip.makeAutoSegments(); strip.setBrightness(0); strip.setShowCallback(handleOverlayDraw); if (turnOnAtBoot) { if (briS > 0) bri = briS; else if (bri == 0) bri = 128; } else { briLast = briS; bri = 0; } if (bootPreset > 0) { applyPreset(bootPreset, CALL_MODE_INIT); } colorUpdated(CALL_MODE_INIT); // init relay pin if (rlyPin>=0) digitalWrite(rlyPin, (rlyMde ? bri : !bri)); } void WLED::initAP(bool resetAP) { if (apBehavior == AP_BEHAVIOR_BUTTON_ONLY && !resetAP) return; if (resetAP) { WLED_SET_AP_SSID(); strcpy_P(apPass, PSTR(WLED_AP_PASS)); } DEBUG_PRINT(F("Opening access point ")); DEBUG_PRINTLN(apSSID); WiFi.softAPConfig(IPAddress(4, 3, 2, 1), IPAddress(4, 3, 2, 1), IPAddress(255, 255, 255, 0)); WiFi.softAP(apSSID, apPass, apChannel, apHide); if (!apActive) // start captive portal if AP active { DEBUG_PRINTLN(F("Init AP interfaces")); server.begin(); if (udpPort > 0 && udpPort != ntpLocalPort) { udpConnected = notifierUdp.begin(udpPort); } if (udpRgbPort > 0 && udpRgbPort != ntpLocalPort && udpRgbPort != udpPort) { udpRgbConnected = rgbUdp.begin(udpRgbPort); } if (udpPort2 > 0 && udpPort2 != ntpLocalPort && udpPort2 != udpPort && udpPort2 != udpRgbPort) { udp2Connected = notifier2Udp.begin(udpPort2); } e131.begin(false, e131Port, e131Universe, E131_MAX_UNIVERSE_COUNT); ddp.begin(false, DDP_DEFAULT_PORT); dnsServer.setErrorReplyCode(DNSReplyCode::NoError); dnsServer.start(53, "*", WiFi.softAPIP()); } apActive = true; } bool WLED::initEthernet() { #if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET) static bool successfullyConfiguredEthernet = false; if (successfullyConfiguredEthernet) { // DEBUG_PRINTLN(F("initE: ETH already successfully configured, ignoring")); return false; } if (ethernetType == WLED_ETH_NONE) { return false; } if (ethernetType >= WLED_NUM_ETH_TYPES) { DEBUG_PRINT(F("initE: Ignoring attempt for invalid ethernetType ")); DEBUG_PRINTLN(ethernetType); return false; } DEBUG_PRINT(F("initE: Attempting ETH config: ")); DEBUG_PRINTLN(ethernetType); // Ethernet initialization should only succeed once -- else reboot required ethernet_settings es = ethernetBoards[ethernetType]; managed_pin_type pinsToAllocate[10] = { // first six pins are non-configurable esp32_nonconfigurable_ethernet_pins[0], esp32_nonconfigurable_ethernet_pins[1], esp32_nonconfigurable_ethernet_pins[2], esp32_nonconfigurable_ethernet_pins[3], esp32_nonconfigurable_ethernet_pins[4], esp32_nonconfigurable_ethernet_pins[5], { (int8_t)es.eth_mdc, true }, // [6] = MDC is output and mandatory { (int8_t)es.eth_mdio, true }, // [7] = MDIO is bidirectional and mandatory { (int8_t)es.eth_power, true }, // [8] = optional pin, not all boards use { ((int8_t)0xFE), false }, // [9] = replaced with eth_clk_mode, mandatory }; // update the clock pin.... if (es.eth_clk_mode == ETH_CLOCK_GPIO0_IN) { pinsToAllocate[9].pin = 0; pinsToAllocate[9].isOutput = false; } else if (es.eth_clk_mode == ETH_CLOCK_GPIO0_OUT) { pinsToAllocate[9].pin = 0; pinsToAllocate[9].isOutput = true; } else if (es.eth_clk_mode == ETH_CLOCK_GPIO16_OUT) { pinsToAllocate[9].pin = 16; pinsToAllocate[9].isOutput = true; } else if (es.eth_clk_mode == ETH_CLOCK_GPIO17_OUT) { pinsToAllocate[9].pin = 17; pinsToAllocate[9].isOutput = true; } else { DEBUG_PRINT(F("initE: Failing due to invalid eth_clk_mode (")); DEBUG_PRINT(es.eth_clk_mode); DEBUG_PRINTLN(")"); return false; } if (!pinManager.allocateMultiplePins(pinsToAllocate, 10, PinOwner::Ethernet)) { DEBUG_PRINTLN(F("initE: Failed to allocate ethernet pins")); return false; } if (!ETH.begin( (uint8_t) es.eth_address, (int) es.eth_power, (int) es.eth_mdc, (int) es.eth_mdio, (eth_phy_type_t) es.eth_type, (eth_clock_mode_t) es.eth_clk_mode )) { DEBUG_PRINTLN(F("initC: ETH.begin() failed")); // de-allocate the allocated pins for (managed_pin_type mpt : pinsToAllocate) { pinManager.deallocatePin(mpt.pin, PinOwner::Ethernet); } return false; } successfullyConfiguredEthernet = true; DEBUG_PRINTLN(F("initC: *** Ethernet successfully configured! ***")); return true; #else return false; // Ethernet not enabled for build #endif } void WLED::initConnection() { #ifdef WLED_ENABLE_WEBSOCKETS ws.onEvent(wsEvent); #endif WiFi.disconnect(true); // close old connections #ifdef ESP8266 WiFi.setPhyMode(WIFI_PHY_MODE_11N); #endif if (staticIP[0] != 0 && staticGateway[0] != 0) { WiFi.config(staticIP, staticGateway, staticSubnet, IPAddress(1, 1, 1, 1)); } else { WiFi.config(IPAddress((uint32_t)0), IPAddress((uint32_t)0), IPAddress((uint32_t)0)); } lastReconnectAttempt = millis(); if (!WLED_WIFI_CONFIGURED) { DEBUG_PRINTLN(F("No connection configured.")); if (!apActive) initAP(); // instantly go to ap mode return; } else if (!apActive) { if (apBehavior == AP_BEHAVIOR_ALWAYS) { DEBUG_PRINTLN(F("Access point ALWAYS enabled.")); initAP(); } else { DEBUG_PRINTLN(F("Access point disabled (init).")); WiFi.softAPdisconnect(true); WiFi.mode(WIFI_STA); } } showWelcomePage = false; DEBUG_PRINT(F("Connecting to ")); DEBUG_PRINT(clientSSID); DEBUG_PRINTLN("..."); // convert the "serverDescription" into a valid DNS hostname (alphanumeric) char hostname[25]; prepareHostname(hostname); #ifdef ESP8266 WiFi.hostname(hostname); #endif WiFi.begin(clientSSID, clientPass); #ifdef ARDUINO_ARCH_ESP32 WiFi.setSleep(!noWifiSleep); WiFi.setHostname(hostname); #else wifi_set_sleep_type((noWifiSleep) ? NONE_SLEEP_T : MODEM_SLEEP_T); #endif } void WLED::initInterfaces() { DEBUG_PRINTLN(F("Init STA interfaces")); #ifndef WLED_DISABLE_HUESYNC IPAddress ipAddress = Network.localIP(); if (hueIP[0] == 0) { hueIP[0] = ipAddress[0]; hueIP[1] = ipAddress[1]; hueIP[2] = ipAddress[2]; } #endif // init Alexa hue emulation if (alexaEnabled) alexaInit(); #ifndef WLED_DISABLE_OTA if (aOtaEnabled) ArduinoOTA.begin(); #endif strip.service(); // Set up mDNS responder: if (strlen(cmDNS) > 0) { // "end" must be called before "begin" is called a 2nd time // see https://github.com/esp8266/Arduino/issues/7213 MDNS.end(); MDNS.begin(cmDNS); DEBUG_PRINTLN(F("mDNS started")); MDNS.addService("http", "tcp", 80); MDNS.addService("wled", "tcp", 80); MDNS.addServiceTxt("wled", "tcp", "mac", escapedMac.c_str()); } server.begin(); if (udpPort > 0 && udpPort != ntpLocalPort) { udpConnected = notifierUdp.begin(udpPort); if (udpConnected && udpRgbPort != udpPort) udpRgbConnected = rgbUdp.begin(udpRgbPort); if (udpConnected && udpPort2 != udpPort && udpPort2 != udpRgbPort) udp2Connected = notifier2Udp.begin(udpPort2); } if (ntpEnabled) ntpConnected = ntpUdp.begin(ntpLocalPort); #ifndef WLED_DISABLE_BLYNK initBlynk(blynkApiKey, blynkHost, blynkPort); #endif e131.begin(e131Multicast, e131Port, e131Universe, E131_MAX_UNIVERSE_COUNT); ddp.begin(false, DDP_DEFAULT_PORT); reconnectHue(); initMqtt(); interfacesInited = true; wasConnected = true; } void WLED::handleConnection() { static byte stacO = 0; static uint32_t lastHeap = UINT32_MAX; static unsigned long heapTime = 0; unsigned long now = millis(); if (now < 2000 && (!WLED_WIFI_CONFIGURED || apBehavior == AP_BEHAVIOR_ALWAYS)) return; if (lastReconnectAttempt == 0) { DEBUG_PRINTLN(F("lastReconnectAttempt == 0")); initConnection(); return; } // reconnect WiFi to clear stale allocations if heap gets too low if (now - heapTime > 5000) { uint32_t heap = ESP.getFreeHeap(); if (heap < MIN_HEAP_SIZE && lastHeap < MIN_HEAP_SIZE) { DEBUG_PRINT(F("Heap too low! ")); DEBUG_PRINTLN(heap); forceReconnect = true; strip.purgeSegments(true); // remove all but one segments from memory } lastHeap = heap; heapTime = now; } byte stac = 0; if (apActive) { #ifdef ESP8266 stac = wifi_softap_get_station_num(); #else wifi_sta_list_t stationList; esp_wifi_ap_get_sta_list(&stationList); stac = stationList.num; #endif if (stac != stacO) { stacO = stac; DEBUG_PRINT(F("Connected AP clients: ")); DEBUG_PRINTLN(stac); if (!WLED_CONNECTED && WLED_WIFI_CONFIGURED) { // trying to connect, but not connected if (stac) WiFi.disconnect(); // disable search so that AP can work else initConnection(); // restart search } } } if (forceReconnect) { DEBUG_PRINTLN(F("Forcing reconnect.")); initConnection(); interfacesInited = false; forceReconnect = false; wasConnected = false; return; } if (!Network.isConnected()) { if (interfacesInited) { DEBUG_PRINTLN(F("Disconnected!")); interfacesInited = false; initConnection(); } //send improv failed 6 seconds after second init attempt (24 sec. after provisioning) if (improvActive > 2 && now - lastReconnectAttempt > 6000) { sendImprovStateResponse(0x03, true); improvActive = 2; } if (now - lastReconnectAttempt > ((stac) ? 300000 : 18000) && WLED_WIFI_CONFIGURED) { if (improvActive == 2) improvActive = 3; DEBUG_PRINTLN(F("Last reconnect too old.")); initConnection(); } if (!apActive && now - lastReconnectAttempt > 12000 && (!wasConnected || apBehavior == AP_BEHAVIOR_NO_CONN)) { DEBUG_PRINTLN(F("Not connected AP.")); initAP(); } } else if (!interfacesInited) { //newly connected DEBUG_PRINTLN(""); DEBUG_PRINT(F("Connected! IP address: ")); DEBUG_PRINTLN(Network.localIP()); if (improvActive) { if (improvError == 3) sendImprovStateResponse(0x00, true); sendImprovStateResponse(0x04); if (improvActive > 1) sendImprovRPCResponse(0x01); } initInterfaces(); userConnected(); usermods.connected(); lastMqttReconnectAttempt = 0; // force immediate update // shut down AP if (apBehavior != AP_BEHAVIOR_ALWAYS && apActive) { dnsServer.stop(); WiFi.softAPdisconnect(true); apActive = false; DEBUG_PRINTLN(F("Access point disabled (handle).")); } } } // If status LED pin is allocated for other uses, does nothing // else blink at 1Hz when WLED_CONNECTED is false (no WiFi, ?? no Ethernet ??) // else blink at 2Hz when MQTT is enabled but not connected // else turn the status LED off void WLED::handleStatusLED() { #if defined(STATUSLED) uint32_t c = 0; #if STATUSLED>=0 if (pinManager.isPinAllocated(STATUSLED)) { return; //lower priority if something else uses the same pin } #endif if (WLED_CONNECTED) { c = RGBW32(0,255,0,0); ledStatusType = 2; } else if (WLED_MQTT_CONNECTED) { c = RGBW32(0,128,0,0); ledStatusType = 4; } else if (apActive) { c = RGBW32(0,0,255,0); ledStatusType = 1; } if (ledStatusType) { if (millis() - ledStatusLastMillis >= (1000/ledStatusType)) { ledStatusLastMillis = millis(); ledStatusState = !ledStatusState; #if STATUSLED>=0 digitalWrite(STATUSLED, ledStatusState); #else busses.setStatusPixel(ledStatusState ? c : 0); #endif } } else { #if STATUSLED>=0 #ifdef STATUSLEDINVERTED digitalWrite(STATUSLED, HIGH); #else digitalWrite(STATUSLED, LOW); #endif #else busses.setStatusPixel(0); #endif } #endif }