#ifndef BusManager_h #define BusManager_h /* * Class for addressing various light types */ #include "const.h" #define GET_BIT(var,bit) (((var)>>(bit))&0x01) #define SET_BIT(var,bit) ((var)|=(uint16_t)(0x0001<<(bit))) #define UNSET_BIT(var,bit) ((var)&=(~(uint16_t)(0x0001<<(bit)))) #define NUM_ICS_WS2812_1CH_3X(len) (((len)+2)/3) // 1 WS2811 IC controls 3 zones (each zone has 1 LED, W) #define IC_INDEX_WS2812_1CH_3X(i) ((i)/3) #define NUM_ICS_WS2812_2CH_3X(len) (((len)+1)*2/3) // 2 WS2811 ICs control 3 zones (each zone has 2 LEDs, CW and WW) #define IC_INDEX_WS2812_2CH_3X(i) ((i)*2/3) #define WS2812_2CH_3X_SPANS_2_ICS(i) ((i)&0x01) // every other LED zone is on two different ICs // flag for using double buffering in BusDigital extern bool useGlobalLedBuffer; //temporary struct for passing bus configuration to bus struct BusConfig { uint8_t type; uint16_t count; uint16_t start; uint8_t colorOrder; bool reversed; uint8_t skipAmount; bool refreshReq; uint8_t autoWhite; uint8_t pins[5] = {LEDPIN, 255, 255, 255, 255}; uint16_t frequency; bool doubleBuffer; BusConfig(uint8_t busType, uint8_t* ppins, uint16_t pstart, uint16_t len = 1, uint8_t pcolorOrder = COL_ORDER_GRB, bool rev = false, uint8_t skip = 0, byte aw=RGBW_MODE_MANUAL_ONLY, uint16_t clock_kHz=0U, bool dblBfr=false) : count(len) , start(pstart) , colorOrder(pcolorOrder) , reversed(rev) , skipAmount(skip) , autoWhite(aw) , frequency(clock_kHz) , doubleBuffer(dblBfr) { refreshReq = (bool) GET_BIT(busType,7); type = busType & 0x7F; // bit 7 may be/is hacked to include refresh info (1=refresh in off state, 0=no refresh) size_t nPins = 1; if (type >= TYPE_NET_DDP_RGB && type < 96) nPins = 4; //virtual network bus. 4 "pins" store IP address else if (type > 47) nPins = 2; else if (type > 40 && type < 46) nPins = NUM_PWM_PINS(type); for (size_t i = 0; i < nPins; i++) pins[i] = ppins[i]; } //validates start and length and extends total if needed bool adjustBounds(uint16_t& total) { if (!count) count = 1; if (count > MAX_LEDS_PER_BUS) count = MAX_LEDS_PER_BUS; if (start >= MAX_LEDS) return false; //limit length of strip if it would exceed total permissible LEDs if (start + count > MAX_LEDS) count = MAX_LEDS - start; //extend total count accordingly if (start + count > total) total = start + count; return true; } }; // Defines an LED Strip and its color ordering. struct ColorOrderMapEntry { uint16_t start; uint16_t len; uint8_t colorOrder; }; struct ColorOrderMap { void add(uint16_t start, uint16_t len, uint8_t colorOrder); uint8_t count() const { return _count; } void reset() { _count = 0; memset(_mappings, 0, sizeof(_mappings)); } const ColorOrderMapEntry* get(uint8_t n) const { if (n > _count) { return nullptr; } return &(_mappings[n]); } uint8_t getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const; private: uint8_t _count; ColorOrderMapEntry _mappings[WLED_MAX_COLOR_ORDER_MAPPINGS]; }; //parent class of BusDigital, BusPwm, and BusNetwork class Bus { public: Bus(uint8_t type, uint16_t start, uint8_t aw, uint16_t len = 1, bool reversed = false, bool refresh = false) : _type(type) , _bri(255) , _start(start) , _len(len) , _reversed(reversed) , _valid(false) , _needsRefresh(refresh) , _data(nullptr) // keep data access consistent across all types of buses { _autoWhiteMode = Bus::hasWhite(_type) ? aw : RGBW_MODE_MANUAL_ONLY; }; virtual ~Bus() {} //throw the bus under the bus virtual void show() = 0; virtual bool canShow() { return true; } virtual void setStatusPixel(uint32_t c) {} virtual void setPixelColor(uint16_t pix, uint32_t c) = 0; virtual uint32_t getPixelColor(uint16_t pix) { return 0; } virtual void setBrightness(uint8_t b) { _bri = b; }; virtual void cleanup() = 0; virtual uint8_t getPins(uint8_t* pinArray) { return 0; } virtual uint16_t getLength() { return _len; } virtual void setColorOrder() {} virtual uint8_t getColorOrder() { return COL_ORDER_RGB; } virtual uint8_t skippedLeds() { return 0; } virtual uint16_t getFrequency() { return 0U; } inline void setReversed(bool reversed) { _reversed = reversed; } inline uint16_t getStart() { return _start; } inline void setStart(uint16_t start) { _start = start; } inline uint8_t getType() { return _type; } inline bool isOk() { return _valid; } inline bool isReversed() { return _reversed; } inline bool isOffRefreshRequired() { return _needsRefresh; } bool containsPixel(uint16_t pix) { return pix >= _start && pix < _start+_len; } virtual bool hasRGB(void) { return Bus::hasRGB(_type); } static bool hasRGB(uint8_t type) { if ((type >= TYPE_WS2812_1CH && type <= TYPE_WS2812_WWA) || type == TYPE_ANALOG_1CH || type == TYPE_ANALOG_2CH || type == TYPE_ONOFF) return false; return true; } virtual bool hasWhite(void) { return Bus::hasWhite(_type); } static bool hasWhite(uint8_t type) { if ((type >= TYPE_WS2812_1CH && type <= TYPE_WS2812_WWA) || type == TYPE_SK6812_RGBW || type == TYPE_TM1814) return true; // digital types with white channel if (type > TYPE_ONOFF && type <= TYPE_ANALOG_5CH && type != TYPE_ANALOG_3CH) return true; // analog types with white channel if (type == TYPE_NET_DDP_RGBW) return true; // network types with white channel return false; } virtual bool hasCCT(void) { return Bus::hasCCT(_type); } static bool hasCCT(uint8_t type) { if (type == TYPE_WS2812_2CH_X3 || type == TYPE_WS2812_WWA || type == TYPE_ANALOG_2CH || type == TYPE_ANALOG_5CH) return true; return false; } static void setCCT(uint16_t cct) { _cct = cct; } static void setCCTBlend(uint8_t b) { if (b > 100) b = 100; _cctBlend = (b * 127) / 100; //compile-time limiter for hardware that can't power both white channels at max #ifdef WLED_MAX_CCT_BLEND if (_cctBlend > WLED_MAX_CCT_BLEND) _cctBlend = WLED_MAX_CCT_BLEND; #endif } inline void setAutoWhiteMode(uint8_t m) { if (m < 5) _autoWhiteMode = m; } inline uint8_t getAutoWhiteMode() { return _autoWhiteMode; } inline static void setGlobalAWMode(uint8_t m) { if (m < 5) _gAWM = m; else _gAWM = AW_GLOBAL_DISABLED; } inline static uint8_t getGlobalAWMode() { return _gAWM; } protected: uint8_t _type; uint8_t _bri; uint16_t _start; uint16_t _len; bool _reversed; bool _valid; bool _needsRefresh; uint8_t _autoWhiteMode; uint8_t *_data; static uint8_t _gAWM; static int16_t _cct; static uint8_t _cctBlend; uint32_t autoWhiteCalc(uint32_t c); uint8_t *allocData(size_t size = 1); void freeData() { if (_data != nullptr) free(_data); _data = nullptr; } }; class BusDigital : public Bus { public: BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com); ~BusDigital() { cleanup(); } void show(); bool canShow(); void setBrightness(uint8_t b); void setStatusPixel(uint32_t c); void setPixelColor(uint16_t pix, uint32_t c); void setColorOrder(uint8_t colorOrder); uint32_t getPixelColor(uint16_t pix); uint8_t getColorOrder() { return _colorOrder; } uint8_t getPins(uint8_t* pinArray); uint8_t skippedLeds() { return _skip; } uint16_t getFrequency() { return _frequencykHz; } void reinit(); void cleanup(); private: uint8_t _skip; uint8_t _colorOrder; uint8_t _pins[2]; uint8_t _iType; uint16_t _frequencykHz; void * _busPtr; const ColorOrderMap &_colorOrderMap; //bool _buffering; // temporary until we figure out why comparison "_data" causes severe FPS drop inline uint32_t restoreColorLossy(uint32_t c, uint8_t restoreBri) { if (restoreBri < 255) { uint8_t* chan = (uint8_t*) &c; for (uint_fast8_t i=0; i<4; i++) { uint_fast16_t val = chan[i]; chan[i] = ((val << 8) + restoreBri) / (restoreBri + 1); //adding _bri slighly improves recovery / stops degradation on re-scale } } return c; } }; class BusPwm : public Bus { public: BusPwm(BusConfig &bc); ~BusPwm() { cleanup(); } void setPixelColor(uint16_t pix, uint32_t c); uint32_t getPixelColor(uint16_t pix); //does no index check uint8_t getPins(uint8_t* pinArray); uint16_t getFrequency() { return _frequency; } void show(); void cleanup() { deallocatePins(); } private: uint8_t _pins[5]; uint8_t _pwmdata[5]; #ifdef ARDUINO_ARCH_ESP32 uint8_t _ledcStart; #endif uint16_t _frequency; void deallocatePins(); }; class BusOnOff : public Bus { public: BusOnOff(BusConfig &bc); ~BusOnOff() { cleanup(); } void setPixelColor(uint16_t pix, uint32_t c); uint32_t getPixelColor(uint16_t pix); uint8_t getPins(uint8_t* pinArray); void show(); void cleanup() { pinManager.deallocatePin(_pin, PinOwner::BusOnOff); } private: uint8_t _pin; uint8_t _onoffdata; }; class BusNetwork : public Bus { public: BusNetwork(BusConfig &bc); ~BusNetwork() { cleanup(); } bool hasRGB() { return true; } bool hasWhite() { return _rgbw; } bool canShow() { return !_broadcastLock; } // this should be a return value from UDP routine if it is still sending data out void setPixelColor(uint16_t pix, uint32_t c); uint32_t getPixelColor(uint16_t pix); uint8_t getPins(uint8_t* pinArray); void show(); void cleanup(); private: IPAddress _client; uint8_t _UDPtype; uint8_t _UDPchannels; bool _rgbw; bool _broadcastLock; }; class BusManager { public: BusManager() : numBusses(0) {}; //utility to get the approx. memory usage of a given BusConfig static uint32_t memUsage(BusConfig &bc); int add(BusConfig &bc); //do not call this method from system context (network callback) void removeAll(); void show(); bool canAllShow(); void setStatusPixel(uint32_t c); void setPixelColor(uint16_t pix, uint32_t c); void setBrightness(uint8_t b); void setSegmentCCT(int16_t cct, bool allowWBCorrection = false); uint32_t getPixelColor(uint16_t pix); Bus* getBus(uint8_t busNr); //semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit()) uint16_t getTotalLength(); inline uint8_t getNumBusses() const { return numBusses; } inline void updateColorOrderMap(const ColorOrderMap &com) { memcpy(&colorOrderMap, &com, sizeof(ColorOrderMap)); } inline const ColorOrderMap& getColorOrderMap() const { return colorOrderMap; } private: uint8_t numBusses; Bus* busses[WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES]; ColorOrderMap colorOrderMap; inline uint8_t getNumVirtualBusses() { int j = 0; for (int i=0; igetType() >= TYPE_NET_DDP_RGB && busses[i]->getType() < 96) j++; return j; } }; #endif