#include "wled.h" /* * UDP sync notifier / Realtime / Hyperion / TPM2.NET */ #define WLEDPACKETSIZE (40+(MAX_NUM_SEGMENTS*3)) #define UDP_IN_MAXSIZE 1472 #define PRESUMED_NETWORK_DELAY 3 //how many ms could it take on avg to reach the receiver? This will be added to transmitted times void notify(byte callMode, bool followUp) { if (!udpConnected) return; if (!syncGroups) return; switch (callMode) { case CALL_MODE_INIT: return; case CALL_MODE_DIRECT_CHANGE: if (!notifyDirect) return; break; case CALL_MODE_BUTTON: if (!notifyButton) return; break; case CALL_MODE_NIGHTLIGHT: if (!notifyDirect) return; break; case CALL_MODE_HUE: if (!notifyHue) return; break; case CALL_MODE_PRESET_CYCLE: if (!notifyDirect) return; break; case CALL_MODE_BLYNK: if (!notifyDirect) return; break; case CALL_MODE_ALEXA: if (!notifyAlexa) return; break; default: return; } byte udpOut[WLEDPACKETSIZE]; WS2812FX::Segment& mainseg = strip.getSegment(strip.getMainSegmentId()); udpOut[0] = 0; //0: wled notifier protocol 1: WARLS protocol udpOut[1] = callMode; udpOut[2] = bri; udpOut[3] = col[0]; udpOut[4] = col[1]; udpOut[5] = col[2]; udpOut[6] = nightlightActive; udpOut[7] = nightlightDelayMins; udpOut[8] = effectCurrent; udpOut[9] = effectSpeed; udpOut[10] = col[3]; //compatibilityVersionByte: //0: old 1: supports white 2: supports secondary color //3: supports FX intensity, 24 byte packet 4: supports transitionDelay 5: sup palette //6: supports timebase syncing, 29 byte packet 7: supports tertiary color 8: supports sys time sync, 36 byte packet //9: supports sync groups, 37 byte packet 10: supports CCT, 39 byte packet 11: per segment options, variable packet length (40+MAX_NUM_SEGMENTS*3) udpOut[11] = 11; udpOut[12] = colSec[0]; udpOut[13] = colSec[1]; udpOut[14] = colSec[2]; udpOut[15] = colSec[3]; udpOut[16] = effectIntensity; udpOut[17] = (transitionDelay >> 0) & 0xFF; udpOut[18] = (transitionDelay >> 8) & 0xFF; udpOut[19] = effectPalette; uint32_t colTer = mainseg.colors[2]; udpOut[20] = (colTer >> 16) & 0xFF; udpOut[21] = (colTer >> 8) & 0xFF; udpOut[22] = (colTer >> 0) & 0xFF; udpOut[23] = (colTer >> 24) & 0xFF; udpOut[24] = followUp; uint32_t t = millis() + strip.timebase; udpOut[25] = (t >> 24) & 0xFF; udpOut[26] = (t >> 16) & 0xFF; udpOut[27] = (t >> 8) & 0xFF; udpOut[28] = (t >> 0) & 0xFF; //sync system time udpOut[29] = toki.getTimeSource(); Toki::Time tm = toki.getTime(); uint32_t unix = tm.sec; udpOut[30] = (unix >> 24) & 0xFF; udpOut[31] = (unix >> 16) & 0xFF; udpOut[32] = (unix >> 8) & 0xFF; udpOut[33] = (unix >> 0) & 0xFF; uint16_t ms = tm.ms; udpOut[34] = (ms >> 8) & 0xFF; udpOut[35] = (ms >> 0) & 0xFF; //sync groups udpOut[36] = syncGroups; //Might be changed to Kelvin in the future, receiver code should handle that case //0: byte 38 contains 0-255 value, 255: no valid CCT, 1-254: Kelvin value MSB udpOut[37] = strip.hasCCTBus() ? 0 : 255; //check this is 0 for the next value to be significant udpOut[38] = mainseg.cct; udpOut[39] = strip.getMaxSegments(); for (uint8_t i = 0; i < strip.getMaxSegments(); i++) { WS2812FX::Segment &selseg = strip.getSegment(i); udpOut[40+i*3] = selseg.options & 0x0F; //only take into account mirrored, selected, on, reversed udpOut[41+i*3] = selseg.spacing; udpOut[42+i*3] = selseg.grouping; } IPAddress broadcastIp; broadcastIp = ~uint32_t(Network.subnetMask()) | uint32_t(Network.gatewayIP()); notifierUdp.beginPacket(broadcastIp, udpPort); notifierUdp.write(udpOut, WLEDPACKETSIZE); notifierUdp.endPacket(); notificationSentCallMode = callMode; notificationSentTime = millis(); notificationTwoRequired = (followUp)? false:notifyTwice; } void realtimeLock(uint32_t timeoutMs, byte md) { if (!realtimeMode && !realtimeOverride){ uint16_t totalLen = strip.getLengthTotal(); for (uint16_t i = 0; i < totalLen; i++) { strip.setPixelColor(i,0,0,0,0); } } realtimeTimeout = millis() + timeoutMs; if (timeoutMs == 255001 || timeoutMs == 65000) realtimeTimeout = UINT32_MAX; // if strip is off (bri==0) and not already in RTM if (bri == 0 && !realtimeMode) { strip.setBrightness(scaledBri(briLast)); } realtimeMode = md; if (arlsForceMaxBri && !realtimeOverride) strip.setBrightness(scaledBri(255)); if (md == REALTIME_MODE_GENERIC) strip.show(); } #define TMP2NET_OUT_PORT 65442 void sendTPM2Ack() { notifierUdp.beginPacket(notifierUdp.remoteIP(), TMP2NET_OUT_PORT); uint8_t response_ack = 0xac; notifierUdp.write(&response_ack, 1); notifierUdp.endPacket(); } void handleNotifications() { IPAddress localIP; //send second notification if enabled if(udpConnected && notificationTwoRequired && millis()-notificationSentTime > 250){ notify(notificationSentCallMode,true); } if (e131NewData && millis() - strip.getLastShow() > 15) { e131NewData = false; strip.show(); } //unlock strip when realtime UDP times out if (realtimeMode && millis() > realtimeTimeout) { if (realtimeOverride == REALTIME_OVERRIDE_ONCE) realtimeOverride = REALTIME_OVERRIDE_NONE; strip.setBrightness(scaledBri(bri)); realtimeMode = REALTIME_MODE_INACTIVE; realtimeIP[0] = 0; } //receive UDP notifications if (!udpConnected) return; bool isSupp = false; uint16_t packetSize = notifierUdp.parsePacket(); if (!packetSize && udp2Connected) { packetSize = notifier2Udp.parsePacket(); isSupp = true; } //hyperion / raw RGB if (!packetSize && udpRgbConnected) { packetSize = rgbUdp.parsePacket(); if (packetSize) { if (!receiveDirect) return; if (packetSize > UDP_IN_MAXSIZE || packetSize < 3) return; realtimeIP = rgbUdp.remoteIP(); DEBUG_PRINTLN(rgbUdp.remoteIP()); uint8_t lbuf[packetSize]; rgbUdp.read(lbuf, packetSize); realtimeLock(realtimeTimeoutMs, REALTIME_MODE_HYPERION); if (realtimeOverride) return; uint16_t id = 0; uint16_t totalLen = strip.getLengthTotal(); for (uint16_t i = 0; i < packetSize -2; i += 3) { setRealtimePixel(id, lbuf[i], lbuf[i+1], lbuf[i+2], 0); id++; if (id >= totalLen) break; } strip.show(); return; } } if (!(receiveNotifications || receiveDirect)) return; localIP = Network.localIP(); //notifier and UDP realtime if (!packetSize || packetSize > UDP_IN_MAXSIZE) return; if (!isSupp && notifierUdp.remoteIP() == localIP) return; //don't process broadcasts we send ourselves uint8_t udpIn[packetSize +1]; uint16_t len; if (isSupp) len = notifier2Udp.read(udpIn, packetSize); else len = notifierUdp.read(udpIn, packetSize); // WLED nodes info notifications if (isSupp && udpIn[0] == 255 && udpIn[1] == 1 && len >= 40) { if (!nodeListEnabled || notifier2Udp.remoteIP() == localIP) return; uint8_t unit = udpIn[39]; NodesMap::iterator it = Nodes.find(unit); if (it == Nodes.end() && Nodes.size() < WLED_MAX_NODES) { // Create a new element when not present Nodes[unit].age = 0; it = Nodes.find(unit); } if (it != Nodes.end()) { for (byte x = 0; x < 4; x++) { it->second.ip[x] = udpIn[x + 2]; } it->second.age = 0; // reset 'age counter' char tmpNodeName[33] = { 0 }; memcpy(&tmpNodeName[0], reinterpret_cast(&udpIn[6]), 32); tmpNodeName[32] = 0; it->second.nodeName = tmpNodeName; it->second.nodeName.trim(); it->second.nodeType = udpIn[38]; uint32_t build = 0; if (len >= 44) for (byte i=0; isecond.build = build; } return; } //wled notifier, ignore if realtime packets active if (udpIn[0] == 0 && !realtimeMode && receiveNotifications) { //ignore notification if received within a second after sending a notification ourselves if (millis() - notificationSentTime < 1000) return; if (udpIn[1] > 199) return; //do not receive custom versions //compatibilityVersionByte: byte version = udpIn[11]; // if we are not part of any sync group ignore message if (version < 9 || version > 199) { // legacy senders are treated as if sending in sync group 1 only if (!(receiveGroups & 0x01)) return; } else if (!(receiveGroups & udpIn[36])) return; bool someSel = (receiveNotificationBrightness || receiveNotificationColor || receiveNotificationEffects); //apply colors from notification if (receiveNotificationColor || !someSel) { col[0] = udpIn[3]; col[1] = udpIn[4]; col[2] = udpIn[5]; if (version > 0) //sending module's white val is intended { col[3] = udpIn[10]; if (version > 1) { colSec[0] = udpIn[12]; colSec[1] = udpIn[13]; colSec[2] = udpIn[14]; colSec[3] = udpIn[15]; } if (version > 6) { strip.setColor(2, udpIn[20], udpIn[21], udpIn[22], udpIn[23]); //tertiary color } if (version > 9 && version < 200 && udpIn[37] < 255) { //valid CCT/Kelvin value uint8_t cct = udpIn[38]; if (udpIn[37] > 0) { //Kelvin cct = (((udpIn[37] << 8) + udpIn[38]) - 1900) >> 5; } uint8_t segid = strip.getMainSegmentId(); strip.getSegment(segid).setCCT(cct, segid); } } } bool timebaseUpdated = false; //apply effects from notification if (version < 200 && (receiveNotificationEffects || !someSel)) { if (currentPlaylist>=0) unloadPlaylist(); if (version>10) { if (receiveSegmentOptions) { // will not sync start & stop uint8_t srcSegs = udpIn[39]; if (srcSegs > strip.getMaxSegments()) srcSegs = strip.getMaxSegments(); for (uint8_t i = 0; i < srcSegs; i++) { WS2812FX::Segment& selseg = strip.getSegment(i); for (uint8_t j = 0; j<4; j++) selseg.setOption(j, (udpIn[40+i*3] >> j) & 0x01); //only take into account mirrored, selected, on, reversed strip.setSegment(i, selseg.start, selseg.stop, udpIn[42+i*3], udpIn[41+i*3], selseg.offset); // will also properly reset segments } } } if (udpIn[8] < strip.getModeCount()) effectCurrent = udpIn[8]; effectSpeed = udpIn[9]; if (version > 2) effectIntensity = udpIn[16]; if (version > 4 && udpIn[19] < strip.getPaletteCount()) effectPalette = udpIn[19]; if (version > 5) { uint32_t t = (udpIn[25] << 24) | (udpIn[26] << 16) | (udpIn[27] << 8) | (udpIn[28]); t += PRESUMED_NETWORK_DELAY; //adjust trivially for network delay t -= millis(); strip.timebase = t; timebaseUpdated = true; } } //adjust system time, but only if sender is more accurate than self if (version > 7 && version < 200) { Toki::Time tm; tm.sec = (udpIn[30] << 24) | (udpIn[31] << 16) | (udpIn[32] << 8) | (udpIn[33]); tm.ms = (udpIn[34] << 8) | (udpIn[35]); if (udpIn[29] > toki.getTimeSource()) { //if sender's time source is more accurate toki.adjust(tm, PRESUMED_NETWORK_DELAY); //adjust trivially for network delay uint8_t ts = TOKI_TS_UDP; if (udpIn[29] > 99) ts = TOKI_TS_UDP_NTP; else if (udpIn[29] >= TOKI_TS_SEC) ts = TOKI_TS_UDP_SEC; toki.setTime(tm, ts); } else if (timebaseUpdated && toki.getTimeSource() > 99) { //if we both have good times, get a more accurate timebase Toki::Time myTime = toki.getTime(); uint32_t diff = toki.msDifference(tm, myTime); strip.timebase -= PRESUMED_NETWORK_DELAY; //no need to presume, use difference between NTP times at send and receive points if (toki.isLater(tm, myTime)) { strip.timebase += diff; } else { strip.timebase -= diff; } } } if (version > 3) { transitionDelayTemp = ((udpIn[17] << 0) & 0xFF) + ((udpIn[18] << 8) & 0xFF00); } nightlightActive = udpIn[6]; if (nightlightActive) nightlightDelayMins = udpIn[7]; if (receiveNotificationBrightness || !someSel) bri = udpIn[2]; colorUpdated(CALL_MODE_NOTIFICATION); return; } if (!receiveDirect) return; //TPM2.NET if (udpIn[0] == 0x9c) { //WARNING: this code assumes that the final TMP2.NET payload is evenly distributed if using multiple packets (ie. frame size is constant) //if the number of LEDs in your installation doesn't allow that, please include padding bytes at the end of the last packet byte tpmType = udpIn[1]; if (tpmType == 0xaa) { //TPM2.NET polling, expect answer sendTPM2Ack(); return; } if (tpmType != 0xda) return; //return if notTPM2.NET data realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP(); realtimeLock(realtimeTimeoutMs, REALTIME_MODE_TPM2NET); if (realtimeOverride) return; tpmPacketCount++; //increment the packet count if (tpmPacketCount == 1) tpmPayloadFrameSize = (udpIn[2] << 8) + udpIn[3]; //save frame size for the whole payload if this is the first packet byte packetNum = udpIn[4]; //starts with 1! byte numPackets = udpIn[5]; uint16_t id = (tpmPayloadFrameSize/3)*(packetNum-1); //start LED uint16_t totalLen = strip.getLengthTotal(); for (uint16_t i = 6; i < tpmPayloadFrameSize + 4; i += 3) { if (id < totalLen) { setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0); id++; } else break; } if (tpmPacketCount == numPackets) //reset packet count and show if all packets were received { tpmPacketCount = 0; strip.show(); } return; } //UDP realtime: 1 warls 2 drgb 3 drgbw if (udpIn[0] > 0 && udpIn[0] < 5) { realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP(); DEBUG_PRINTLN(realtimeIP); if (packetSize < 2) return; if (udpIn[1] == 0) { realtimeTimeout = 0; return; } else { realtimeLock(udpIn[1]*1000 +1, REALTIME_MODE_UDP); } if (realtimeOverride) return; uint16_t totalLen = strip.getLengthTotal(); if (udpIn[0] == 1) //warls { for (uint16_t i = 2; i < packetSize -3; i += 4) { setRealtimePixel(udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3], 0); } } else if (udpIn[0] == 2) //drgb { uint16_t id = 0; for (uint16_t i = 2; i < packetSize -2; i += 3) { setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0); id++; if (id >= totalLen) break; } } else if (udpIn[0] == 3) //drgbw { uint16_t id = 0; for (uint16_t i = 2; i < packetSize -3; i += 4) { setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]); id++; if (id >= totalLen) break; } } else if (udpIn[0] == 4) //dnrgb { uint16_t id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00); for (uint16_t i = 4; i < packetSize -2; i += 3) { if (id >= totalLen) break; setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0); id++; } } else if (udpIn[0] == 5) //dnrgbw { uint16_t id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00); for (uint16_t i = 4; i < packetSize -2; i += 4) { if (id >= totalLen) break; setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]); id++; } } strip.show(); return; } // API over UDP udpIn[packetSize] = '\0'; if (udpIn[0] >= 'A' && udpIn[0] <= 'Z') { //HTTP API String apireq = "win&"; apireq += (char*)udpIn; handleSet(nullptr, apireq); } else if (udpIn[0] == '{') { //JSON API DynamicJsonDocument jsonBuffer(2048); DeserializationError error = deserializeJson(jsonBuffer, udpIn); JsonObject root = jsonBuffer.as(); if (!error && !root.isNull()) deserializeState(root); } } void setRealtimePixel(uint16_t i, byte r, byte g, byte b, byte w) { uint16_t pix = i + arlsOffset; if (pix < strip.getLengthTotal()) { if (!arlsDisableGammaCorrection && strip.gammaCorrectCol) { strip.setPixelColor(pix, strip.gamma8(r), strip.gamma8(g), strip.gamma8(b), strip.gamma8(w)); } else { strip.setPixelColor(pix, r, g, b, w); } } } /*********************************************************************************************\ Refresh aging for remote units, drop if too old... \*********************************************************************************************/ void refreshNodeList() { for (NodesMap::iterator it = Nodes.begin(); it != Nodes.end();) { bool mustRemove = true; if (it->second.ip[0] != 0) { if (it->second.age < 10) { it->second.age++; mustRemove = false; ++it; } } if (mustRemove) { it = Nodes.erase(it); } } } /*********************************************************************************************\ Broadcast system info to other nodes. (to update node lists) \*********************************************************************************************/ void sendSysInfoUDP() { if (!udp2Connected) return; IPAddress ip = Network.localIP(); if (!ip || ip == IPAddress(255,255,255,255)) ip = IPAddress(4,3,2,1); // TODO: make a nice struct of it and clean up // 0: 1 byte 'binary token 255' // 1: 1 byte id '1' // 2: 4 byte ip // 6: 32 char name // 38: 1 byte node type id // 39: 1 byte node id // 40: 4 byte version ID // 44 bytes total // send my info to the world... uint8_t data[44] = {0}; data[0] = 255; data[1] = 1; for (byte x = 0; x < 4; x++) { data[x + 2] = ip[x]; } memcpy((byte *)data + 6, serverDescription, 32); #ifdef ESP8266 data[38] = NODE_TYPE_ID_ESP8266; #elif defined(ARDUINO_ARCH_ESP32) data[38] = NODE_TYPE_ID_ESP32; #else data[38] = NODE_TYPE_ID_UNDEFINED; #endif data[39] = ip[3]; // unit ID == last IP number uint32_t build = VERSION; for (byte i=0; i>(8*i)) & 0xFF; IPAddress broadcastIP(255, 255, 255, 255); notifier2Udp.beginPacket(broadcastIP, udpPort2); notifier2Udp.write(data, sizeof(data)); notifier2Udp.endPacket(); } /*********************************************************************************************\ * Art-Net, DDP, E131 output - work in progress \*********************************************************************************************/ #define DDP_HEADER_LEN 10 #define DDP_SYNCPACKET_LEN 10 #define DDP_FLAGS1_VER 0xc0 // version mask #define DDP_FLAGS1_VER1 0x40 // version=1 #define DDP_FLAGS1_PUSH 0x01 #define DDP_FLAGS1_QUERY 0x02 #define DDP_FLAGS1_REPLY 0x04 #define DDP_FLAGS1_STORAGE 0x08 #define DDP_FLAGS1_TIME 0x10 #define DDP_ID_DISPLAY 1 #define DDP_ID_CONFIG 250 #define DDP_ID_STATUS 251 // 1440 channels per packet #define DDP_CHANNELS_PER_PACKET 1440 // 480 leds // // Send real time UDP updates to the specified client // // type - protocol type (0=DDP, 1=E1.31, 2=ArtNet) // client - the IP address to send to // length - the number of pixels // buffer - a buffer of at least length*4 bytes long // isRGBW - true if the buffer contains 4 components per pixel uint8_t sequenceNumber = 0; // this needs to be shared across all outputs uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, uint8_t *buffer, uint8_t bri, bool isRGBW) { if (!interfacesInited) return 1; // network not initialised WiFiUDP ddpUdp; switch (type) { case 0: // DDP { // calclate the number of UDP packets we need to send uint16_t channelCount = length * 3; // 1 channel for every R,G,B value uint16_t packetCount = channelCount / DDP_CHANNELS_PER_PACKET; if (channelCount % DDP_CHANNELS_PER_PACKET) { packetCount++; } // there are 3 channels per RGB pixel uint32_t channel = 0; // TODO: allow specifying the start channel // the current position in the buffer uint16_t bufferOffset = 0; for (uint16_t currentPacket = 0; currentPacket < packetCount; currentPacket++) { if (sequenceNumber > 15) sequenceNumber = 0; if (!ddpUdp.beginPacket(client, DDP_DEFAULT_PORT)) { // port defined in ESPAsyncE131.h DEBUG_PRINTLN(F("WiFiUDP.beginPacket returned an error")); return 1; // problem } // the amount of data is AFTER the header in the current packet uint16_t packetSize = DDP_CHANNELS_PER_PACKET; uint8_t flags = DDP_FLAGS1_VER1; if (currentPacket == (packetCount - 1)) { // last packet, set the push flag // TODO: determine if we want to send an empty push packet to each destination after sending the pixel data flags = DDP_FLAGS1_VER1 | DDP_FLAGS1_PUSH; if (channelCount % DDP_CHANNELS_PER_PACKET) { packetSize = channelCount % DDP_CHANNELS_PER_PACKET; } } // write the header /*0*/ddpUdp.write(flags); /*1*/ddpUdp.write(sequenceNumber++ & 0x0F); // sequence may be unnecessary unless we are sending twice (as requested in Sync settings) /*2*/ddpUdp.write(0); /*3*/ddpUdp.write(DDP_ID_DISPLAY); // data offset in bytes, 32-bit number, MSB first /*4*/ddpUdp.write(0xFF & (channel >> 24)); /*5*/ddpUdp.write(0xFF & (channel >> 16)); /*6*/ddpUdp.write(0xFF & (channel >> 8)); /*7*/ddpUdp.write(0xFF & (channel )); // data length in bytes, 16-bit number, MSB first /*8*/ddpUdp.write(0xFF & (packetSize >> 8)); /*9*/ddpUdp.write(0xFF & (packetSize )); // write the colors, the write write(const uint8_t *buffer, size_t size) // function is just a loop internally too for (uint16_t i = 0; i < packetSize; i += 3) { ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // R ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // G ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // B if (isRGBW) bufferOffset++; } if (!ddpUdp.endPacket()) { DEBUG_PRINTLN(F("WiFiUDP.endPacket returned an error")); return 1; // problem } channel += packetSize; } } break; case 1: //E1.31 { } break; case 2: //ArtNet { } break; } return 0; }