#pragma once #include "wled.h" #include #include #ifndef ESP32 #error This audio reactive usermod does not support the ESP8266. #endif #ifdef WLED_DEBUG #include #endif /* * Usermods allow you to add own functionality to WLED more easily * See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality * * This is an audioreactive v2 usermod. * .... */ // Comment/Uncomment to toggle usb serial debugging // #define MIC_LOGGER // MIC sampling & sound input debugging (serial plotter) // #define FFT_SAMPLING_LOG // FFT result debugging // #define SR_DEBUG // generic SR DEBUG messages // #define NO_MIC_LOGGER // exclude MIC_LOGGER from SR_DEBUG #ifdef SR_DEBUG #define DEBUGSR_PRINT(x) Serial.print(x) #define DEBUGSR_PRINTLN(x) Serial.println(x) #define DEBUGSR_PRINTF(x...) Serial.printf(x) #else #define DEBUGSR_PRINT(x) #define DEBUGSR_PRINTLN(x) #define DEBUGSR_PRINTF(x...) #endif #include "audio_source.h" constexpr i2s_port_t I2S_PORT = I2S_NUM_0; constexpr int BLOCK_SIZE = 128; constexpr int SAMPLE_RATE = 22050; // Base sample rate in Hz - 22Khz is a standard rate. Physical sample time -> 23ms //constexpr int SAMPLE_RATE = 20480; // Base sample rate in Hz - 20Khz is experimental. Physical sample time -> 25ms //constexpr int SAMPLE_RATE = 10240; // Base sample rate in Hz - previous default. Physical sample time -> 50ms #define FFT_MIN_CYCLE 18 // minimum time before FFT task is repeated. Use with 22Khz sampling //#define FFT_MIN_CYCLE 22 // minimum time before FFT task is repeated. Use with 20Khz sampling //#define FFT_MIN_CYCLE 44 // minimum time before FFT task is repeated. Use with 10Khz sampling // globals static uint8_t inputLevel = 128; // UI slider value static uint8_t soundSquelch = 10; // squelch value for volume reactive routines (config value) static uint8_t sampleGain = 60; // sample gain (config value) static uint8_t soundAgc = 0; // Automagic gain control: 0 - none, 1 - normal, 2 - vivid, 3 - lazy (config value) static uint8_t audioSyncEnabled = 0; // bit field: bit 0 - send, bit 1 - receive (config value) // user settable parameters for limitSoundDynamics() static bool limiterOn = true; // bool: enable / disable dynamics limiter static uint16_t attackTime = 80; // int: attack time in milliseconds. Default 0.08sec static uint16_t decayTime = 1400; // int: decay time in milliseconds. Default 1.40sec // user settable options for FFTResult scaling static uint8_t FFTScalingMode = 3; // 0 none; 1 optimized logarithmic; 2 optimized linear; 3 optimized sqare root // // AGC presets // Note: in C++, "const" implies "static" - no need to explicitly declare everything as "static const" // #define AGC_NUM_PRESETS 3 // AGC presets: normal, vivid, lazy const double agcSampleDecay[AGC_NUM_PRESETS] = { 0.9994f, 0.9985f, 0.9997f}; // decay factor for sampleMax, in case the current sample is below sampleMax const float agcZoneLow[AGC_NUM_PRESETS] = { 32, 28, 36}; // low volume emergency zone const float agcZoneHigh[AGC_NUM_PRESETS] = { 240, 240, 248}; // high volume emergency zone const float agcZoneStop[AGC_NUM_PRESETS] = { 336, 448, 304}; // disable AGC integrator if we get above this level const float agcTarget0[AGC_NUM_PRESETS] = { 112, 144, 164}; // first AGC setPoint -> between 40% and 65% const float agcTarget0Up[AGC_NUM_PRESETS] = { 88, 64, 116}; // setpoint switching value (a poor man's bang-bang) const float agcTarget1[AGC_NUM_PRESETS] = { 220, 224, 216}; // second AGC setPoint -> around 85% const double agcFollowFast[AGC_NUM_PRESETS] = { 1/192.f, 1/128.f, 1/256.f}; // quickly follow setpoint - ~0.15 sec const double agcFollowSlow[AGC_NUM_PRESETS] = {1/6144.f,1/4096.f,1/8192.f}; // slowly follow setpoint - ~2-15 secs const double agcControlKp[AGC_NUM_PRESETS] = { 0.6f, 1.5f, 0.65f}; // AGC - PI control, proportional gain parameter const double agcControlKi[AGC_NUM_PRESETS] = { 1.7f, 1.85f, 1.2f}; // AGC - PI control, integral gain parameter const float agcSampleSmooth[AGC_NUM_PRESETS] = { 1/12.f, 1/6.f, 1/16.f}; // smoothing factor for sampleAgc (use rawSampleAgc if you want the non-smoothed value) // AGC presets end static AudioSource *audioSource = nullptr; static volatile bool disableSoundProcessing = false; // if true, sound processing (FFT, filters, AGC) will be suspended. "volatile" as its shared between tasks. static float micDataReal = 0.0f; // MicIn data with full 24bit resolution - lowest 8bit after decimal point static float sampleReal = 0.0f; // "sampleRaw" as float, to provide bits that are lost otherwise (before amplification by sampleGain or inputLevel). Needed for AGC. static float multAgc = 1.0f; // sample * multAgc = sampleAgc. Our AGC multiplier static int16_t sampleRaw = 0; // Current sample. Must only be updated ONCE!!! (amplified mic value by sampleGain and inputLevel) static int16_t rawSampleAgc = 0; // not smoothed AGC sample static float sampleAvg = 0.0f; // Smoothed Average sampleRaw static float sampleAgc = 0.0f; // Smoothed AGC sample //////////////////// // Begin FFT Code // //////////////////// #ifdef UM_AUDIOREACTIVE_USE_NEW_FFT // lib_deps += https://github.com/kosme/arduinoFFT#develop @ 1.9.2 #define FFT_SPEED_OVER_PRECISION // enables use of reciprocals (1/x etc), and an a few other speedups #define FFT_SQRT_APPROXIMATION // enables "quake3" style inverse sqrt #define sqrt(x) sqrtf(x) // little hack that reduces FFT time by 50% on ESP32 (as alternative to FFT_SQRT_APPROXIMATION) #endif #include "arduinoFFT.h" // FFT Variables constexpr uint16_t samplesFFT = 512; // Samples in an FFT batch - This value MUST ALWAYS be a power of 2 constexpr uint16_t samplesFFT_2 = 256; // meaningfull part of FFT results - only the "lower half" contains useful information. static float FFT_MajorPeak = 1.0f; static float FFT_Magnitude = 0.0f; // These are the input and output vectors. Input vectors receive computed results from FFT. static float vReal[samplesFFT] = {0.0f}; static float vImag[samplesFFT] = {0.0f}; static float fftBin[samplesFFT_2] = {0.0f}; // the following are observed values, supported by a bit of "educated guessing" //#define FFT_DOWNSCALE 0.65f // 20kHz - downscaling factor for FFT results - "Flat-Top" window @20Khz, old freq channels #define FFT_DOWNSCALE 0.46f // downscaling factor for FFT results - for "Flat-Top" window @22Khz, new freq channels #define LOG_256 5.54517744 #ifdef UM_AUDIOREACTIVE_USE_NEW_FFT static float windowWeighingFactors[samplesFFT] = {0.0f}; #endif // Try and normalize fftBin values to a max of 4096, so that 4096/16 = 256. // Oh, and bins 0,1,2 are no good, so we'll zero them out. static float fftCalc[16] = {0.0f}; static uint8_t fftResult[16] = {0}; // Our calculated result table, which we feed to the animations. #ifdef SR_DEBUG static float fftResultMax[16] = {0.0f}; // A table used for testing to determine how our post-processing is working. #endif static float fftAvg[16] = {0.0f}; #ifdef WLED_DEBUG static unsigned long fftTime = 0; static unsigned long sampleTime = 0; #endif // Table of multiplication factors so that we can even out the frequency response. static float fftResultPink[16] = { 1.70f, 1.71f, 1.73f, 1.78f, 1.68f, 1.56f, 1.55f, 1.63f, 1.79f, 1.62f, 1.80f, 2.06f, 2.47f, 3.35f, 6.83f, 9.55f }; // Create FFT object #ifdef UM_AUDIOREACTIVE_USE_NEW_FFT static ArduinoFFT FFT = ArduinoFFT( vReal, vImag, samplesFFT, SAMPLE_RATE, windowWeighingFactors); #else static arduinoFFT FFT = arduinoFFT(vReal, vImag, samplesFFT, SAMPLE_RATE); #endif static TaskHandle_t FFT_Task = nullptr; // float version of map() static float mapf(float x, float in_min, float in_max, float out_min, float out_max){ return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; } static float fftAddAvg(int from, int to) { float result = 0.0f; for (int i = from; i <= to; i++) { result += fftBin[i]; } return result / float(to - from + 1); } // FFT main code void FFTcode(void * parameter) { DEBUGSR_PRINT("FFT started on core: "); DEBUGSR_PRINTLN(xPortGetCoreID()); // see https://www.freertos.org/vtaskdelayuntil.html const TickType_t xFrequency = FFT_MIN_CYCLE * portTICK_PERIOD_MS; for(;;) { TickType_t xLastWakeTime = xTaskGetTickCount(); delay(1); // DO NOT DELETE THIS LINE! It is needed to give the IDLE(0) task enough time and to keep the watchdog happy. // taskYIELD(), yield(), vTaskDelay() and esp_task_wdt_feed() didn't seem to work. vTaskDelayUntil( &xLastWakeTime, xFrequency); // release CPU, and let I2S fill its buffers // Only run the FFT computing code if we're not in Receive mode and not in realtime mode if (disableSoundProcessing || (audioSyncEnabled & 0x02)) { continue; } #ifdef WLED_DEBUG uint64_t start = esp_timer_get_time(); #endif if (audioSource) audioSource->getSamples(vReal, samplesFFT); #ifdef WLED_DEBUG if (start < esp_timer_get_time()) { // filter out overflows unsigned long sampleTimeInMillis = (esp_timer_get_time() - start +500ULL) / 1000ULL; // "+500" to ensure proper rounding sampleTime = (sampleTimeInMillis*3 + sampleTime*7)/10; // smooth } #endif //const int halfSamplesFFT = samplesFFT / 2; // samplesFFT divided by 2 float maxSample = 0.0f; // max sample from FFT batch for (int i=0; i < samplesFFT; i++) { // set imaginary parts to 0 vImag[i] = 0; // pick our our current mic sample - we take the max value from all samples that go into FFT if ((vReal[i] <= (INT16_MAX - 1024)) && (vReal[i] >= (INT16_MIN + 1024))) //skip extreme values - normally these are artefacts if (fabsf((float)vReal[i]) > maxSample) maxSample = fabsf((float)vReal[i]); } // release sample to volume reactive effects (not really necessary as float FFT calculation takes only 2ms) micDataReal = maxSample; // run FFT #ifdef UM_AUDIOREACTIVE_USE_NEW_FFT FFT.dcRemoval(); // remove DC offset FFT.windowing( FFTWindow::Flat_top, FFTDirection::Forward); // Weigh data using "Flat Top" function - better amplitude accuracy //FFT.windowing(FFTWindow::Blackman_Harris, FFTDirection::Forward); // Weigh data using "Blackman- Harris" window - sharp peaks due to excellent sideband rejection FFT.compute( FFTDirection::Forward ); // Compute FFT FFT.complexToMagnitude(); // Compute magnitudes #else FFT.DCRemoval(); // let FFT lib remove DC component, so we don't need to care about this in getSamples() //FFT.Windowing( FFT_WIN_TYP_HAMMING, FFT_FORWARD ); // Weigh data - standard Hamming window //FFT.Windowing( FFT_WIN_TYP_BLACKMAN, FFT_FORWARD ); // Blackman window - better side freq rejection //FFT.Windowing( FFT_WIN_TYP_BLACKMAN_HARRIS, FFT_FORWARD );// Blackman-Harris - excellent sideband rejection FFT.Windowing( FFT_WIN_TYP_FLT_TOP, FFT_FORWARD ); // Flat Top Window - better amplitude accuracy FFT.Compute( FFT_FORWARD ); // Compute FFT FFT.ComplexToMagnitude(); // Compute magnitudes #endif #ifdef UM_AUDIOREACTIVE_USE_NEW_FFT FFT.majorPeak(FFT_MajorPeak, FFT_Magnitude); // let the effects know which freq was most dominant #else FFT.MajorPeak(&FFT_MajorPeak, &FFT_Magnitude); // let the effects know which freq was most dominant #endif FFT_MajorPeak = constrain(FFT_MajorPeak, 1.0f, 11025.0f); // restrict value to range expected by effects for (int i = 0; i < samplesFFT_2; i++) { // Values for bins 0 and 1 are WAY too large. Might as well start at 3. float t = fabsf(vReal[i]); // just to be sure - values in fft bins should be positive any way fftBin[i] = t / 16.0f; // Reduce magnitude. Want end result to be linear and ~4096 max. } // for() if (sampleAvg > 1) { // noise gate open #if 0 /* This FFT post processing is a DIY endeavour. What we really need is someone with sound engineering expertise to do a great job here AND most importantly, that the animations look GREAT as a result. * * Andrew's updated mapping of 256 bins down to the 16 result bins with Sample Freq = 10240, samplesFFT = 512 and some overlap. * Based on testing, the lowest/Start frequency is 60 Hz (with bin 3) and a highest/End frequency of 5120 Hz in bin 255. * Now, Take the 60Hz and multiply by 1.320367784 to get the next frequency and so on until the end. Then detetermine the bins. * End frequency = Start frequency * multiplier ^ 16 * Multiplier = (End frequency/ Start frequency) ^ 1/16 * Multiplier = 1.320367784 */ // Range fftCalc[ 0] = fftAddAvg(2,4); // 60 - 100 fftCalc[ 1] = fftAddAvg(4,5); // 80 - 120 fftCalc[ 2] = fftAddAvg(5,7); // 100 - 160 fftCalc[ 3] = fftAddAvg(7,9); // 140 - 200 fftCalc[ 4] = fftAddAvg(9,12); // 180 - 260 fftCalc[ 5] = fftAddAvg(12,16); // 240 - 340 fftCalc[ 6] = fftAddAvg(16,21); // 320 - 440 fftCalc[ 7] = fftAddAvg(21,29); // 420 - 600 fftCalc[ 8] = fftAddAvg(29,37); // 580 - 760 fftCalc[ 9] = fftAddAvg(37,48); // 740 - 980 fftCalc[10] = fftAddAvg(48,64); // 960 - 1300 fftCalc[11] = fftAddAvg(64,84); // 1280 - 1700 fftCalc[12] = fftAddAvg(84,111); // 1680 - 2240 fftCalc[13] = fftAddAvg(111,147); // 2220 - 2960 fftCalc[14] = fftAddAvg(147,194); // 2940 - 3900 fftCalc[15] = fftAddAvg(194,250); // 3880 - 5000 // avoid the last 5 bins, which are usually inaccurate #else /* new mapping, optimized for 22050 Hz by softhack007 */ // bins frequency range fftCalc[ 0] = fftAddAvg(1,2); // 1 43 - 86 sub-bass fftCalc[ 1] = fftAddAvg(2,3); // 1 86 - 129 bass fftCalc[ 2] = fftAddAvg(3,5); // 2 129 - 216 bass fftCalc[ 3] = fftAddAvg(5,7); // 2 216 - 301 bass + midrange fftCalc[ 4] = fftAddAvg(7,10); // 3 301 - 430 midrange fftCalc[ 5] = fftAddAvg(10,13); // 3 430 - 560 midrange fftCalc[ 6] = fftAddAvg(13,19); // 5 560 - 818 midrange fftCalc[ 7] = fftAddAvg(19,26); // 7 818 - 1120 midrange -- 1Khz should always be the center ! fftCalc[ 8] = fftAddAvg(26,33); // 7 1120 - 1421 midrange fftCalc[ 9] = fftAddAvg(33,44); // 9 1421 - 1895 midrange fftCalc[10] = fftAddAvg(44,56); // 12 1895 - 2412 midrange + high mid fftCalc[11] = fftAddAvg(56,70); // 14 2412 - 3015 high mid fftCalc[12] = fftAddAvg(70,86); // 16 3015 - 3704 high mid fftCalc[13] = fftAddAvg(86,104); // 18 3704 - 4479 high mid fftCalc[14] = fftAddAvg(104,165) * 0.88f; // 61 4479 - 7106 high mid + high -- with slight damping fftCalc[15] = fftAddAvg(165,215) * 0.70f; // 50 7106 - 9259 high -- with some damping // don't use the last bins from 216 to 255. They are usually contaminated by aliasing (aka noise) #endif } else { // noise gate closed for (int i=0; i < 16; i++) { //fftCalc[i] *= 0.82f; // decay to zero fftCalc[i] *= 0.85f; // decay to zero if (fftCalc[i] < 4.0f) fftCalc[i] = 0.0f; } } for (int i=0; i < 16; i++) { if (sampleAvg > 1) { // noise gate open // Adjustment for frequency curves. fftCalc[i] *= fftResultPink[i]; if (FFTScalingMode > 0) fftCalc[i] *= FFT_DOWNSCALE; // adjustment related to FFT windowing function // Manual linear adjustment of gain using sampleGain adjustment for different input types. fftCalc[i] *= soundAgc ? multAgc : ((float)sampleGain/40.0f * (float)inputLevel/128.0f + 1.0f/16.0f); //with inputLevel adjustment if(fftCalc[i] < 0) fftCalc[i] = 0; } // smooth results - rise fast, fall slower if(fftCalc[i] > fftAvg[i]) // rise fast fftAvg[i] = fftCalc[i] *0.75f + 0.25f*fftAvg[i]; // will need approx 2 cycles (50ms) for converging against fftCalc[i] else { // fall slow if (decayTime < 1000) fftAvg[i] = fftCalc[i]*0.22f + 0.78f*fftAvg[i]; // approx 5 cycles (225ms) for falling to zero else if (decayTime < 2000) fftAvg[i] = fftCalc[i]*0.17f + 0.83f*fftAvg[i]; // default - approx 9 cycles (225ms) for falling to zero else if (decayTime < 3000) fftAvg[i] = fftCalc[i]*0.14f + 0.86f*fftAvg[i]; // approx 14 cycles (350ms) for falling to zero else fftAvg[i] = fftCalc[i]*0.1f + 0.9f*fftAvg[i]; // approx 20 cycles (500ms) for falling to zero } // constrain internal vars - just to be sure fftCalc[i] = constrain(fftCalc[i], 0.0f, 1023.0f); fftAvg[i] = constrain(fftAvg[i], 0.0f, 1023.0f); float currentResult; if(limiterOn == true) currentResult = fftAvg[i]; else currentResult = fftCalc[i]; switch (FFTScalingMode) { case 1: // Logarithmic scaling currentResult *= 0.42; // 42 is the answer ;-) currentResult -= 8.0; // this skips the lowest row, giving some room for peaks if (currentResult > 1.0) currentResult = logf(currentResult); // log to base "e", which is the fastest log() function else currentResult = 0.0; // special handling, because log(1) = 0; log(0) = undefined currentResult *= 0.85f + (float(i)/18.0f); // extra up-scaling for high frequencies currentResult = mapf(currentResult, 0, LOG_256, 0, 255); // map [log(1) ... log(255)] to [0 ... 255] break; case 2: // Linear scaling currentResult *= 0.30f; // needs a bit more damping, get stay below 255 currentResult -= 4.0; // giving a bit more room for peaks if (currentResult < 1.0f) currentResult = 0.0f; currentResult *= 0.85f + (float(i)/1.8f); // extra up-scaling for high frequencies break; case 3: // square root scaling currentResult *= 0.38f; currentResult -= 6.0f; if (currentResult > 1.0) currentResult = sqrtf(currentResult); else currentResult = 0.0; // special handling, because sqrt(0) = undefined currentResult *= 0.85f + (float(i)/4.5f); // extra up-scaling for high frequencies currentResult = mapf(currentResult, 0.0, 16.0, 0.0, 255.0); // map [sqrt(1) ... sqrt(256)] to [0 ... 255] break; case 0: default: // no scaling - leave freq bins as-is currentResult -= 4; // just a bit more room for peaks break; } // Now, let's dump it all into fftResult. Need to do this, otherwise other routines might grab fftResult values prematurely. if (soundAgc > 0) { // apply extra "GEQ Gain" if set by user float post_gain = (float)inputLevel/128.0f; if (post_gain < 1.0f) post_gain = ((post_gain -1.0f) * 0.8f) +1.0f; currentResult *= post_gain; } fftResult[i] = constrain((int)currentResult, 0, 255); } #ifdef WLED_DEBUG if (start < esp_timer_get_time()) { // filter out overflows unsigned long fftTimeInMillis = ((esp_timer_get_time() - start) +500ULL) / 1000ULL; // "+500" to ensure proper rounding fftTime = (fftTimeInMillis*3 + fftTime*7)/10; // smooth } #endif } // for(;;) } // FFTcode() //class name. Use something descriptive and leave the ": public Usermod" part :) class AudioReactive : public Usermod { private: #ifndef AUDIOPIN int8_t audioPin = -1; #else int8_t audioPin = AUDIOPIN; #endif #ifndef DMTYPE // I2S mic type uint8_t dmType = 1; // 0=none/disabled/analog; 1=generic I2S #else uint8_t dmType = DMTYPE; #endif #ifndef I2S_SDPIN // aka DOUT int8_t i2ssdPin = 32; #else int8_t i2ssdPin = I2S_SDPIN; #endif #ifndef I2S_WSPIN // aka LRCL int8_t i2swsPin = 15; #else int8_t i2swsPin = I2S_WSPIN; #endif #ifndef I2S_CKPIN // aka BCLK int8_t i2sckPin = 14; #else int8_t i2sckPin = I2S_CKPIN; #endif #ifndef ES7243_SDAPIN int8_t sdaPin = -1; #else int8_t sdaPin = ES7243_SDAPIN; #endif #ifndef ES7243_SCLPIN int8_t sclPin = -1; #else int8_t sclPin = ES7243_SCLPIN; #endif #ifndef MCLK_PIN int8_t mclkPin = -1; #else int8_t mclkPin = MLCK_PIN; #endif // new "V2" audiosync struct - 40 Bytes struct audioSyncPacket { char header[6]; // 06 Bytes float sampleRaw; // 04 Bytes - either "sampleRaw" or "rawSampleAgc" depending on soundAgc setting float sampleSmth; // 04 Bytes - either "sampleAvg" or "sampleAgc" depending on soundAgc setting uint8_t samplePeak; // 01 Bytes - 0 no peak; >=1 peak detected. In future, this will also provide peak Magnitude uint8_t reserved1; // 01 Bytes - for future extensions - not used yet uint8_t fftResult[16]; // 16 Bytes float FFT_Magnitude; // 04 Bytes float FFT_MajorPeak; // 04 Bytes }; // old "V1" audiosync struct - 83 Bytes - for backwards compatibility struct audioSyncPacket_v1 { char header[6]; // 06 Bytes uint8_t myVals[32]; // 32 Bytes int sampleAgc; // 04 Bytes int sampleRaw; // 04 Bytes float sampleAvg; // 04 Bytes bool samplePeak; // 01 Bytes uint8_t fftResult[16]; // 16 Bytes double FFT_Magnitude; // 08 Bytes double FFT_MajorPeak; // 08 Bytes }; WiFiUDP fftUdp; // set your config variables to their boot default value (this can also be done in readFromConfig() or a constructor if you prefer) bool enabled = false; bool initDone = false; const uint16_t delayMs = 10; // I don't want to sample too often and overload WLED // variables used in effects uint8_t maxVol = 10; // Reasonable value for constant volume for 'peak detector', as it won't always trigger (deprecated) uint8_t binNum = 8; // Used to select the bin for FFT based beat detection (deprecated) bool samplePeak = 0; // Boolean flag for peak. Responding routine must reset this flag float volumeSmth = 0.0f; // either sampleAvg or sampleAgc depending on soundAgc; smoothed sample int16_t volumeRaw = 0; // either sampleRaw or rawSampleAgc depending on soundAgc float my_magnitude =0.0f; // FFT_Magnitude, scaled by multAgc bool udpSamplePeak = 0; // Boolean flag for peak. Set at the same tiem as samplePeak, but reset by transmitAudioData int16_t micIn = 0; // Current sample starts with negative values and large values, which is why it's 16 bit signed double sampleMax = 0.0; // Max sample over a few seconds. Needed for AGC controler. uint32_t timeOfPeak = 0; unsigned long lastTime = 0; // last time of running UDP Microphone Sync float micLev = 0.0f; // Used to convert returned value to have '0' as minimum. A leveller float expAdjF = 0.0f; // Used for exponential filter. bool udpSyncConnected = false; uint16_t audioSyncPort = 11988; // used for AGC uint8_t lastMode = 0; // last known effect mode int last_soundAgc = -1; double control_integrated = 0.0; // persistent across calls to agcAvg(); "integrator control" = accumulated error unsigned long last_update_time = 0; unsigned long last_kick_time = 0; uint8_t last_user_inputLevel = 0; // used to feed "Info" Page unsigned long last_UDPTime = 0; // time of last valid UDP sound sync datapacket float maxSample5sec = 0.0f; // max sample (after AGC) in last 5 seconds unsigned long sampleMaxTimer = 0; // last time maxSample5sec was reset #define CYCLE_SAMPLEMAX 3500 // time window for merasuring // strings to reduce flash memory usage (used more than twice) static const char _name[]; static const char _enabled[]; static const char _inputLvl[]; static const char _analogmic[]; static const char _digitalmic[]; static const char UDP_SYNC_HEADER[]; static const char UDP_SYNC_HEADER_v1[]; // private methods void logAudio() { #ifdef MIC_LOGGER // Debugging functions for audio input and sound processing. Comment out the values you want to see Serial.print("micReal:"); Serial.print(micDataReal); Serial.print("\t"); //Serial.print("micIn:"); Serial.print(micIn); Serial.print("\t"); //Serial.print("micLev:"); Serial.print(micLev); Serial.print("\t"); //Serial.print("sampleReal:"); Serial.print(sampleReal); Serial.print("\t"); //Serial.print("sample:"); Serial.print(sample); Serial.print("\t"); //Serial.print("sampleAvg:"); Serial.print(sampleAvg); Serial.print("\t"); //Serial.print("sampleMax:"); Serial.print(sampleMax); Serial.print("\t"); //Serial.print("samplePeak:"); Serial.print((samplePeak!=0) ? 128:0); Serial.print("\t"); //Serial.print("multAgc:"); Serial.print(multAgc, 4); Serial.print("\t"); Serial.print("sampleAgc:"); Serial.print(sampleAgc); Serial.print("\t"); //Serial.print("volumeRaw:"); Serial.print(volumeRaw); Serial.print("\t"); //Serial.print("volumeSmth:"); Serial.print(volumeSmth); Serial.print("\t"); Serial.println(); #endif #ifdef FFT_SAMPLING_LOG #if 0 for(int i=0; i<16; i++) { Serial.print(fftResult[i]); Serial.print("\t"); } Serial.println(); #endif // OPTIONS are in the following format: Description \n Option // // Set true if wanting to see all the bands in their own vertical space on the Serial Plotter, false if wanting to see values in Serial Monitor const bool mapValuesToPlotterSpace = false; // Set true to apply an auto-gain like setting to to the data (this hasn't been tested recently) const bool scaleValuesFromCurrentMaxVal = false; // prints the max value seen in the current data const bool printMaxVal = false; // prints the min value seen in the current data const bool printMinVal = false; // if !scaleValuesFromCurrentMaxVal, we scale values from [0..defaultScalingFromHighValue] to [0..scalingToHighValue], lower this if you want to see smaller values easier const int defaultScalingFromHighValue = 256; // Print values to terminal in range of [0..scalingToHighValue] if !mapValuesToPlotterSpace, or [(i)*scalingToHighValue..(i+1)*scalingToHighValue] if mapValuesToPlotterSpace const int scalingToHighValue = 256; // set higher if using scaleValuesFromCurrentMaxVal and you want a small value that's also the current maxVal to look small on the plotter (can't be 0 to avoid divide by zero error) const int minimumMaxVal = 1; int maxVal = minimumMaxVal; int minVal = 0; for(int i = 0; i < 16; i++) { if(fftResult[i] > maxVal) maxVal = fftResult[i]; if(fftResult[i] < minVal) minVal = fftResult[i]; } for(int i = 0; i < 16; i++) { Serial.print(i); Serial.print(":"); Serial.printf("%04ld ", map(fftResult[i], 0, (scaleValuesFromCurrentMaxVal ? maxVal : defaultScalingFromHighValue), (mapValuesToPlotterSpace*i*scalingToHighValue)+0, (mapValuesToPlotterSpace*i*scalingToHighValue)+scalingToHighValue-1)); } if(printMaxVal) { Serial.printf("maxVal:%04d ", maxVal + (mapValuesToPlotterSpace ? 16*256 : 0)); } if(printMinVal) { Serial.printf("%04d:minVal ", minVal); // printed with value first, then label, so negative values can be seen in Serial Monitor but don't throw off y axis in Serial Plotter } if(mapValuesToPlotterSpace) Serial.printf("max:%04d ", (printMaxVal ? 17 : 16)*256); // print line above the maximum value we expect to see on the plotter to avoid autoscaling y axis else Serial.printf("max:%04d ", 256); Serial.println(); #endif // FFT_SAMPLING_LOG } // logAudio() /* * A "PI controller" multiplier to automatically adjust sound sensitivity. * * A few tricks are implemented so that sampleAgc does't only utilize 0% and 100%: * 0. don't amplify anything below squelch (but keep previous gain) * 1. gain input = maximum signal observed in the last 5-10 seconds * 2. we use two setpoints, one at ~60%, and one at ~80% of the maximum signal * 3. the amplification depends on signal level: * a) normal zone - very slow adjustment * b) emergency zome (<10% or >90%) - very fast adjustment */ void agcAvg(unsigned long the_time) { const int AGC_preset = (soundAgc > 0)? (soundAgc-1): 0; // make sure the _compiler_ knows this value will not change while we are inside the function float lastMultAgc = multAgc; // last muliplier used float multAgcTemp = multAgc; // new multiplier float tmpAgc = sampleReal * multAgc; // what-if amplified signal float control_error; // "control error" input for PI control if (last_soundAgc != soundAgc) control_integrated = 0.0; // new preset - reset integrator // For PI controller, we need to have a constant "frequency" // so let's make sure that the control loop is not running at insane speed static unsigned long last_time = 0; unsigned long time_now = millis(); if ((the_time > 0) && (the_time < time_now)) time_now = the_time; // allow caller to override my clock if (time_now - last_time > 2) { last_time = time_now; if((fabs(sampleReal) < 2.0f) || (sampleMax < 1.0f)) { // MIC signal is "squelched" - deliver silence tmpAgc = 0; // we need to "spin down" the intgrated error buffer if (fabs(control_integrated) < 0.01) control_integrated = 0.0; else control_integrated *= 0.91; } else { // compute new setpoint if (tmpAgc <= agcTarget0Up[AGC_preset]) multAgcTemp = agcTarget0[AGC_preset] / sampleMax; // Make the multiplier so that sampleMax * multiplier = first setpoint else multAgcTemp = agcTarget1[AGC_preset] / sampleMax; // Make the multiplier so that sampleMax * multiplier = second setpoint } // limit amplification if (multAgcTemp > 32.0f) multAgcTemp = 32.0f; if (multAgcTemp < 1.0f/64.0f) multAgcTemp = 1.0f/64.0f; // compute error terms control_error = multAgcTemp - lastMultAgc; if (((multAgcTemp > 0.085f) && (multAgcTemp < 6.5f)) //integrator anti-windup by clamping && (multAgc*sampleMax < agcZoneStop[AGC_preset])) //integrator ceiling (>140% of max) control_integrated += control_error * 0.002 * 0.25; // 2ms = intgration time; 0.25 for damping else control_integrated *= 0.9; // spin down that beasty integrator // apply PI Control tmpAgc = sampleReal * lastMultAgc; // check "zone" of the signal using previous gain if ((tmpAgc > agcZoneHigh[AGC_preset]) || (tmpAgc < soundSquelch + agcZoneLow[AGC_preset])) { // upper/lower emergy zone multAgcTemp = lastMultAgc + agcFollowFast[AGC_preset] * agcControlKp[AGC_preset] * control_error; multAgcTemp += agcFollowFast[AGC_preset] * agcControlKi[AGC_preset] * control_integrated; } else { // "normal zone" multAgcTemp = lastMultAgc + agcFollowSlow[AGC_preset] * agcControlKp[AGC_preset] * control_error; multAgcTemp += agcFollowSlow[AGC_preset] * agcControlKi[AGC_preset] * control_integrated; } // limit amplification again - PI controler sometimes "overshoots" //multAgcTemp = constrain(multAgcTemp, 0.015625f, 32.0f); // 1/64 < multAgcTemp < 32 if (multAgcTemp > 32.0f) multAgcTemp = 32.0f; if (multAgcTemp < 1.0f/64.0f) multAgcTemp = 1.0f/64.0f; } // NOW finally amplify the signal tmpAgc = sampleReal * multAgcTemp; // apply gain to signal if (fabsf(sampleReal) < 2.0f) tmpAgc = 0.0f; // apply squelch threshold //tmpAgc = constrain(tmpAgc, 0, 255); if (tmpAgc > 255) tmpAgc = 255.0f; // limit to 8bit if (tmpAgc < 1) tmpAgc = 0.0f; // just to be sure // update global vars ONCE - multAgc, sampleAGC, rawSampleAgc multAgc = multAgcTemp; rawSampleAgc = 0.8f * tmpAgc + 0.2f * (float)rawSampleAgc; // update smoothed AGC sample if (fabsf(tmpAgc) < 1.0f) sampleAgc = 0.5f * tmpAgc + 0.5f * sampleAgc; // fast path to zero else sampleAgc += agcSampleSmooth[AGC_preset] * (tmpAgc - sampleAgc); // smooth path last_soundAgc = soundAgc; } // agcAvg() void getSample() { float sampleAdj; // Gain adjusted sample value float tmpSample; // An interim sample variable used for calculatioins. const float weighting = 0.2f; // Exponential filter weighting. Will be adjustable in a future release. const int AGC_preset = (soundAgc > 0)? (soundAgc-1): 0; // make sure the _compiler_ knows this value will not change while we are inside the function #ifdef WLED_DISABLE_SOUND micIn = inoise8(millis(), millis()); // Simulated analog read micDataReal = micIn; #else #ifdef ESP32 micIn = int(micDataReal); // micDataSm = ((micData * 3) + micData)/4; #else // this is the minimal code for reading analog mic input on 8266. // warning!! Absolutely experimental code. Audio on 8266 is still not working. Expects a million follow-on problems. static unsigned long lastAnalogTime = 0; static float lastAnalogValue = 0.0f; if (millis() - lastAnalogTime > 20) { micDataReal = analogRead(A0); // read one sample with 10bit resolution. This is a dirty hack, supporting volumereactive effects only. lastAnalogTime = millis(); lastAnalogValue = micDataReal; yield(); } else micDataReal = lastAnalogValue; micIn = int(micDataReal); #endif #endif micLev = ((micLev * 8191.0f) + micDataReal) / 8192.0f; // takes a few seconds to "catch up" with the Mic Input if(micIn < micLev) micLev = ((micLev * 31.0f) + micDataReal) / 32.0f; // align MicLev to lowest input signal micIn -= micLev; // Let's center it to 0 now // Using an exponential filter to smooth out the signal. We'll add controls for this in a future release. float micInNoDC = fabs(micDataReal - micLev); expAdjF = (weighting * micInNoDC + (1.0-weighting) * expAdjF); expAdjF = (expAdjF <= soundSquelch) ? 0: expAdjF; // simple noise gate if ((soundSquelch == 0) && (expAdjF < 0.25f)) expAdjF = 0; // do something meaningfull when "squelch = 0" expAdjF = fabsf(expAdjF); // Now (!) take the absolute value tmpSample = expAdjF; micIn = abs(micIn); // And get the absolute value of each sample sampleAdj = tmpSample * sampleGain / 40.0f * inputLevel/128.0f + tmpSample / 16.0f; // Adjust the gain. with inputLevel adjustment sampleReal = tmpSample; sampleAdj = fmax(fmin(sampleAdj, 255), 0); // Question: why are we limiting the value to 8 bits ??? sampleRaw = (int16_t)sampleAdj; // ONLY update sample ONCE!!!! // keep "peak" sample, but decay value if current sample is below peak if ((sampleMax < sampleReal) && (sampleReal > 0.5f)) { sampleMax = sampleMax + 0.5f * (sampleReal - sampleMax); // new peak - with some filtering } else { if ((multAgc*sampleMax > agcZoneStop[AGC_preset]) && (soundAgc > 0)) sampleMax += 0.5f * (sampleReal - sampleMax); // over AGC Zone - get back quickly else sampleMax *= agcSampleDecay[AGC_preset]; // signal to zero --> 5-8sec } if (sampleMax < 0.5f) sampleMax = 0.0f; sampleAvg = ((sampleAvg * 15.0f) + sampleAdj) / 16.0f; // Smooth it out over the last 16 samples. // Fixes private class variable compiler error. Unsure if this is the correct way of fixing the root problem. -THATDONFC uint16_t MinShowDelay = strip.getMinShowDelay(); if (millis() - timeOfPeak > MinShowDelay) { // Auto-reset of samplePeak after a complete frame has passed. samplePeak = false; udpSamplePeak = false; } //if (userVar1 == 0) samplePeak = 0; // Poor man's beat detection by seeing if sample > Average + some value. if ((maxVol > 0) && (binNum > 1) && (fftBin[binNum] > maxVol) && (millis() > (timeOfPeak + 100))) { // This goes through ALL of the 255 bins - but ignores stupid settings // Then we got a peak, else we don't. The peak has to time out on its own in order to support UDP sound sync. samplePeak = true; timeOfPeak = millis(); udpSamplePeak = true; } } // getSample() /* Limits the dynamics of volumeSmth (= sampleAvg or sampleAgc). * does not affect FFTResult[] or volumeRaw ( = sample or rawSampleAgc) */ // effects: Gravimeter, Gravcenter, Gravcentric, Noisefire, Plasmoid, Freqpixels, Freqwave, Gravfreq, (2D Swirl, 2D Waverly) void limitSampleDynamics(void) { const float bigChange = 196; // just a representative number - a large, expected sample value static unsigned long last_time = 0; static float last_volumeSmth = 0.0f; if (limiterOn == false) return; long delta_time = millis() - last_time; delta_time = constrain(delta_time , 1, 1000); // below 1ms -> 1ms; above 1sec -> sily lil hick-up float deltaSample = volumeSmth - last_volumeSmth; if (attackTime > 0) { // user has defined attack time > 0 float maxAttack = bigChange * float(delta_time) / float(attackTime); if (deltaSample > maxAttack) deltaSample = maxAttack; } if (decayTime > 0) { // user has defined decay time > 0 float maxDecay = - bigChange * float(delta_time) / float(decayTime); if (deltaSample < maxDecay) deltaSample = maxDecay; } volumeSmth = last_volumeSmth + deltaSample; last_volumeSmth = volumeSmth; last_time = millis(); } void transmitAudioData() { if (!udpSyncConnected) return; //DEBUGSR_PRINTLN("Transmitting UDP Mic Packet"); audioSyncPacket transmitData; strncpy_P(transmitData.header, PSTR(UDP_SYNC_HEADER), 6); // transmit samples that were not modified by limitSampleDynamics() transmitData.sampleRaw = (soundAgc) ? rawSampleAgc: sampleRaw; transmitData.sampleSmth = (soundAgc) ? sampleAgc : sampleAvg; transmitData.samplePeak = udpSamplePeak ? 1:0; udpSamplePeak = false; // Reset udpSamplePeak after we've transmitted it transmitData.reserved1 = 0; for (int i = 0; i < 16; i++) { transmitData.fftResult[i] = (uint8_t)constrain(fftResult[i], 0, 254); } transmitData.FFT_Magnitude = my_magnitude; transmitData.FFT_MajorPeak = FFT_MajorPeak; fftUdp.beginMulticastPacket(); fftUdp.write(reinterpret_cast(&transmitData), sizeof(transmitData)); fftUdp.endPacket(); return; } // transmitAudioData() static bool isValidUdpSyncVersion(const char *header) { return strncmp_P(header, PSTR(UDP_SYNC_HEADER), 6) == 0; } bool receiveAudioData() // check & process new data. return TRUE in case that new audio data was received. { if (!udpSyncConnected) return false; bool haveFreshData = false; size_t packetSize = fftUdp.parsePacket(); if (packetSize > 5) { //DEBUGSR_PRINTLN("Received UDP Sync Packet"); uint8_t fftBuff[packetSize]; fftUdp.read(fftBuff, packetSize); // VERIFY THAT THIS IS A COMPATIBLE PACKET if (packetSize == sizeof(audioSyncPacket) && (isValidUdpSyncVersion((const char *)fftBuff))) { audioSyncPacket *receivedPacket = reinterpret_cast(fftBuff); // update samples for effects volumeSmth = fmaxf(receivedPacket->sampleSmth, 0.0f); volumeRaw = fmaxf(receivedPacket->sampleRaw, 0.0f); // update internal samples sampleRaw = volumeRaw; sampleAvg = volumeSmth; rawSampleAgc = volumeRaw; sampleAgc = volumeSmth; multAgc = 1.0f; // auto-reset sample peak. Need to do it here, because getSample() is not running uint16_t MinShowDelay = strip.getMinShowDelay(); if (millis() - timeOfPeak > MinShowDelay) { // Auto-reset of samplePeak after a complete frame has passed. samplePeak = false; udpSamplePeak = false; } //if (userVar1 == 0) samplePeak = 0; // Only change samplePeak IF it's currently false. // If it's true already, then the animation still needs to respond. if (!samplePeak) { samplePeak = receivedPacket->samplePeak >0 ? true:false; if (samplePeak) timeOfPeak = millis(); //userVar1 = samplePeak; } //These values are only available on the ESP32 for (int i = 0; i < 16; i++) fftResult[i] = receivedPacket->fftResult[i]; my_magnitude = fmaxf(receivedPacket->FFT_Magnitude, 0.0f); FFT_Magnitude = my_magnitude; FFT_MajorPeak = constrain(receivedPacket->FFT_MajorPeak, 1.0f, 11025.0f); // restrict value to range expected by effects //DEBUGSR_PRINTLN("Finished parsing UDP Sync Packet"); haveFreshData = true; } } return haveFreshData; } public: //Functions called by WLED or other usermods /* * setup() is called once at boot. WiFi is not yet connected at this point. * You can use it to initialize variables, sensors or similar. * It is called *AFTER* readFromConfig() */ void setup() { disableSoundProcessing = true; // just to be sure if (!initDone) { // usermod exchangeable data // we will assign all usermod exportable data here as pointers to original variables or arrays and allocate memory for pointers um_data = new um_data_t; um_data->u_size = 8; um_data->u_type = new um_types_t[um_data->u_size]; um_data->u_data = new void*[um_data->u_size]; um_data->u_data[0] = &volumeSmth; //*used (New) um_data->u_type[0] = UMT_FLOAT; um_data->u_data[1] = &volumeRaw; // used (New) um_data->u_type[1] = UMT_UINT16; um_data->u_data[2] = fftResult; //*used (Blurz, DJ Light, Noisemove, GEQ_base, 2D Funky Plank, Akemi) um_data->u_type[2] = UMT_BYTE_ARR; um_data->u_data[3] = &samplePeak; //*used (Puddlepeak, Ripplepeak, Waterfall) um_data->u_type[3] = UMT_BYTE; um_data->u_data[4] = &FFT_MajorPeak; //*used (Ripplepeak, Freqmap, Freqmatrix, Freqpixels, Freqwave, Gravfreq, Rocktaves, Waterfall) um_data->u_type[4] = UMT_FLOAT; um_data->u_data[5] = &my_magnitude; // used (New) um_data->u_type[5] = UMT_FLOAT; um_data->u_data[6] = &maxVol; // assigned in effect function from UI element!!! (Puddlepeak, Ripplepeak, Waterfall) um_data->u_type[6] = UMT_BYTE; um_data->u_data[7] = &binNum; // assigned in effect function from UI element!!! (Puddlepeak, Ripplepeak, Waterfall) um_data->u_type[7] = UMT_BYTE; } // Reset I2S peripheral for good measure i2s_driver_uninstall(I2S_NUM_0); periph_module_reset(PERIPH_I2S0_MODULE); delay(100); // Give that poor microphone some time to setup. switch (dmType) { case 1: DEBUGSR_PRINT(F("AR: Generic I2S Microphone - ")); DEBUGSR_PRINTLN(F(I2S_MIC_CHANNEL_TEXT)); audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE); delay(100); if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin); break; case 2: DEBUGSR_PRINTLN(F("AR: ES7243 Microphone (right channel only).")); audioSource = new ES7243(SAMPLE_RATE, BLOCK_SIZE); delay(100); if (audioSource) audioSource->initialize(sdaPin, sclPin, i2swsPin, i2ssdPin, i2sckPin, mclkPin); break; case 3: DEBUGSR_PRINT(F("AR: SPH0645 Microphone - ")); DEBUGSR_PRINTLN(F(I2S_MIC_CHANNEL_TEXT)); audioSource = new SPH0654(SAMPLE_RATE, BLOCK_SIZE); delay(100); audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin); break; case 4: DEBUGSR_PRINT(F("AR: Generic I2S Microphone with Master Clock - ")); DEBUGSR_PRINTLN(F(I2S_MIC_CHANNEL_TEXT)); audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE); delay(100); if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin, i2sckPin, mclkPin); break; case 5: DEBUGSR_PRINT(F("AR: I2S PDM Microphone - ")); DEBUGSR_PRINTLN(F(I2S_MIC_CHANNEL_TEXT)); audioSource = new I2SSource(SAMPLE_RATE, BLOCK_SIZE); delay(100); if (audioSource) audioSource->initialize(i2swsPin, i2ssdPin); break; case 0: default: DEBUGSR_PRINTLN(F("AR: Analog Microphone (left channel only).")); audioSource = new I2SAdcSource(SAMPLE_RATE, BLOCK_SIZE); delay(100); if (audioSource) audioSource->initialize(audioPin); break; } delay(250); // give microphone enough time to initialise if (!audioSource) enabled = false; // audio failed to initialise if (enabled) onUpdateBegin(false); // create FFT task if (FFT_Task == nullptr) enabled = false; // FFT task creation failed if (enabled) disableSoundProcessing = false; // all good - enable audio processing if((!audioSource) || (!audioSource->isInitialized())) { // audio source failed to initialize. Still stay "enabled", as there might be input arriving via UDP Sound Sync DEBUGSR_PRINTLN(F("AR: Failed to initialize sound input driver. Please check input PIN settings.")); disableSoundProcessing = true; } initDone = true; } /* * connected() is called every time the WiFi is (re)connected * Use it to initialize network interfaces */ void connected() { if (audioSyncPort > 0 && (audioSyncEnabled & 0x03)) { #ifndef ESP8266 udpSyncConnected = fftUdp.beginMulticast(IPAddress(239, 0, 0, 1), audioSyncPort); #else udpSyncConnected = fftUdp.beginMulticast(WiFi.localIP(), IPAddress(239, 0, 0, 1), audioSyncPort); #endif } } /* * loop() is called continuously. Here you can check for events, read sensors, etc. * * Tips: * 1. You can use "if (WLED_CONNECTED)" to check for a successful network connection. * Additionally, "if (WLED_MQTT_CONNECTED)" is available to check for a connection to an MQTT broker. * * 2. Try to avoid using the delay() function. NEVER use delays longer than 10 milliseconds. * Instead, use a timer check as shown here. */ void loop() { static unsigned long lastUMRun = millis(); if (!enabled) { disableSoundProcessing = true; // keep processing suspended (FFT task) lastUMRun = millis(); // update time keeping return; } // We cannot wait indefinitely before processing audio data if (strip.isUpdating() && (millis() - lastUMRun < 2)) return; // be nice, but not too nice // suspend local sound processing when "real time mode" is active (E131, UDP, ADALIGHT, ARTNET) if ( (realtimeOverride == REALTIME_OVERRIDE_NONE) // please odd other orrides here if needed &&( (realtimeMode == REALTIME_MODE_GENERIC) ||(realtimeMode == REALTIME_MODE_E131) ||(realtimeMode == REALTIME_MODE_UDP) ||(realtimeMode == REALTIME_MODE_ADALIGHT) ||(realtimeMode == REALTIME_MODE_ARTNET) ) ) // please add other modes here if needed { #ifdef WLED_DEBUG if ((disableSoundProcessing == false) && (audioSyncEnabled == 0)) { // we just switched to "disabled" DEBUG_PRINTLN("[AR userLoop] realtime mode active - audio processing suspended."); DEBUG_PRINTF( " RealtimeMode = %d; RealtimeOverride = %d\n", int(realtimeMode), int(realtimeOverride)); } #endif disableSoundProcessing = true; } else { #ifdef WLED_DEBUG if ((disableSoundProcessing == true) && (audioSyncEnabled == 0)) { // we just switched to "disabled" DEBUG_PRINTLN("[AR userLoop] realtime mode ended - audio processing resumed."); DEBUG_PRINTF( " RealtimeMode = %d; RealtimeOverride = %d\n", int(realtimeMode), int(realtimeOverride)); } #endif if ((disableSoundProcessing == true) && (audioSyncEnabled == 0)) lastUMRun = millis(); // just left "realtime mode" - update timekeeping disableSoundProcessing = false; } if (audioSyncEnabled & 0x02) disableSoundProcessing = true; // make sure everything is disabled IF in audio Receive mode if (audioSyncEnabled & 0x01) disableSoundProcessing = false; // keep running audio IF we're in audio Transmit mode if (!audioSource->isInitialized()) disableSoundProcessing = true; // no audio source // Only run the sampling code IF we're not in Receive mode or realtime mode if (!(audioSyncEnabled & 0x02) && !disableSoundProcessing) { bool agcEffect = false; if (soundAgc > AGC_NUM_PRESETS) soundAgc = 0; // make sure that AGC preset is valid (to avoid array bounds violation) unsigned long t_now = millis(); // remember current time int userloopDelay = int(t_now - lastUMRun); if (lastUMRun == 0) userloopDelay=0; // startup - don't have valid data from last run. #ifdef WLED_DEBUG // complain when audio userloop has been delayed for long time. Currently we need userloop running between 500 and 1500 times per second. if ((userloopDelay > 23) && !disableSoundProcessing && (audioSyncEnabled == 0)) { DEBUG_PRINTF("[AR userLoop] hickup detected -> was inactive for last %d millis!\n", userloopDelay); } #endif // run filters, and repeat in case of loop delays (hick-up compensation) if (userloopDelay <2) userloopDelay = 0; // minor glitch, no problem if (userloopDelay >200) userloopDelay = 200; // limit number of filter re-runs do { getSample(); // run microphone sampling filters agcAvg(t_now - userloopDelay); // Calculated the PI adjusted value as sampleAvg userloopDelay -= 2; // advance "simulated time" by 2ms } while (userloopDelay > 0); lastUMRun = t_now; // update time keeping // update samples for effects (raw, smooth) volumeSmth = (soundAgc) ? sampleAgc : sampleAvg; volumeRaw = (soundAgc) ? rawSampleAgc: sampleRaw; // update FFTMagnitude, taking into account AGC amplification my_magnitude = FFT_Magnitude; // / 16.0f, 8.0f, 4.0f done in effects if (soundAgc) my_magnitude *= multAgc; if (volumeSmth < 1 ) my_magnitude = 0.001f; // noise gate closed - mute limitSampleDynamics(); // optional - makes volumeSmth very smooth and fluent } // UDP Microphone Sync - receive mode if ((audioSyncEnabled & 0x02) && udpSyncConnected) { // Only run the audio listener code if we're in Receive mode static float syncVolumeSmth = 0; bool have_new_sample = false; if (millis() - lastTime > delayMs) { have_new_sample = receiveAudioData(); if (have_new_sample) last_UDPTime = millis(); lastTime = millis(); } if (have_new_sample) syncVolumeSmth = volumeSmth; // remember received sample else volumeSmth = syncVolumeSmth; // restore originally received sample for next run of dynamics limiter limitSampleDynamics(); // run dynamics limiter on received volumeSmth, to hide jumps and hickups } #if defined(MIC_LOGGER) || defined(MIC_SAMPLING_LOG) || defined(FFT_SAMPLING_LOG) EVERY_N_MILLIS(20) { logAudio(); } #endif // peak sample from last 5 seconds if ((millis() - sampleMaxTimer) > CYCLE_SAMPLEMAX) { sampleMaxTimer = millis(); maxSample5sec = (0.15 * maxSample5sec) + 0.85 *((soundAgc) ? sampleAgc : sampleAvg); // reset, and start with some smoothing if (sampleAvg < 1) maxSample5sec = 0; // noise gate } else { if ((sampleAvg >= 1)) maxSample5sec = fmaxf(maxSample5sec, (soundAgc) ? rawSampleAgc : sampleRaw); // follow maximum volume } //UDP Microphone Sync - transmit mode if ((audioSyncEnabled & 0x01) && (millis() - lastTime > 20)) { // Only run the transmit code IF we're in Transmit mode transmitAudioData(); lastTime = millis(); } } bool getUMData(um_data_t **data) { if (!data || !enabled) return false; // no pointer provided by caller or not enabled -> exit *data = um_data; return true; } void onUpdateBegin(bool init) { #ifdef WLED_DEBUG fftTime = sampleTime = 0; #endif // gracefully suspend FFT task (if running) disableSoundProcessing = true; // reset sound data micDataReal = 0.0f; volumeRaw = 0; volumeSmth = 0; sampleAgc = 0; sampleAvg = 0; sampleRaw = 0; rawSampleAgc = 0; my_magnitude = 0; FFT_Magnitude = 0; FFT_MajorPeak = 1; multAgc = 1; // reset FFT data memset(fftCalc, 0, sizeof(fftCalc)); memset(fftAvg, 0, sizeof(fftAvg)); memset(fftResult, 0, sizeof(fftResult)); for(int i=(init?0:1); i<16; i+=2) fftResult[i] = 16; // make a tiny pattern inputLevel = 128; // resset level slider to default if (init && FFT_Task) { vTaskSuspend(FFT_Task); // update is about to begin, disable task to prevent crash if (udpSyncConnected) { // close UDP sync connection (if open) udpSyncConnected = false; fftUdp.stop(); } } else { // update has failed or create task requested if (FFT_Task) { vTaskResume(FFT_Task); connected(); // resume UDP } else // xTaskCreatePinnedToCore( xTaskCreate( // no need to "pin" this task to core #0 FFTcode, // Function to implement the task "FFT", // Name of the task 5000, // Stack size in words NULL, // Task input parameter 1, // Priority of the task &FFT_Task // Task handle // , 0 // Core where the task should run ); } micDataReal = 0.0f; // just to be sure if (enabled) disableSoundProcessing = false; } /** * handleButton() can be used to override default button behaviour. Returning true * will prevent button working in a default way. */ bool handleButton(uint8_t b) { yield(); // crude way of determining if audio input is analog // better would be for AudioSource to implement getType() if (enabled && dmType == 0 && audioPin>=0 && (buttonType[b] == BTN_TYPE_ANALOG || buttonType[b] == BTN_TYPE_ANALOG_INVERTED) ) { return true; } return false; } /* * addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API. * Creating an "u" object allows you to add custom key/value pairs to the Info section of the WLED web UI. * Below it is shown how this could be used for e.g. a light sensor */ void addToJsonInfo(JsonObject& root) { char myStringBuffer[16]; // buffer for snprintf() JsonObject user = root["u"]; if (user.isNull()) user = root.createNestedObject("u"); JsonArray infoArr = user.createNestedArray(FPSTR(_name)); String uiDomString = F(""); infoArr.add(uiDomString); if (enabled) { // Input Level Slider if (disableSoundProcessing == false) { // only show slider when audio processing is running if (soundAgc > 0) infoArr = user.createNestedArray(F("GEQ Input Level")); // if AGC is on, this slider only affects fftResult[] frequencies else infoArr = user.createNestedArray(F("Audio Input Level")); uiDomString = F("
"); // infoArr.add(uiDomString); } // The following can be used for troubleshooting user errors and is so not enclosed in #ifdef WLED_DEBUG // current Audio input infoArr = user.createNestedArray(F("Audio Source")); if (audioSyncEnabled & 0x02) { // UDP sound sync - receive mode infoArr.add(F("UDP sound sync")); if (udpSyncConnected) { if (millis() - last_UDPTime < 2500) infoArr.add(F(" - receiving")); else infoArr.add(F(" - idle")); } else { infoArr.add(F(" - no connection")); } } else { // Analog or I2S digital input if (audioSource && (audioSource->isInitialized())) { // audio source sucessfully configured if (audioSource->getType() == AudioSource::Type_I2SAdc) { infoArr.add(F("ADC analog")); } else { infoArr.add(F("I2S digital")); } // input level or "silence" if (maxSample5sec > 1.0) { float my_usage = 100.0f * (maxSample5sec / 255.0f); snprintf_P(myStringBuffer, 15, PSTR(" - peak %3d%%"), int(my_usage)); infoArr.add(myStringBuffer); } else { infoArr.add(F(" - quiet")); } } else { // error during audio source setup infoArr.add(F("not initialized")); infoArr.add(F(" - check GPIO config")); } } // Sound processing (FFT and input filters) infoArr = user.createNestedArray(F("Sound Processing")); if (audioSource && (disableSoundProcessing == false)) { infoArr.add(F("running")); } else { infoArr.add(F("suspended")); } // AGC or manual Gain if ((soundAgc==0) && (disableSoundProcessing == false) && !(audioSyncEnabled & 0x02)) { infoArr = user.createNestedArray(F("Manual Gain")); float myGain = ((float)sampleGain/40.0f * (float)inputLevel/128.0f) + 1.0f/16.0f; // non-AGC gain from presets infoArr.add(roundf(myGain*100.0f) / 100.0f); infoArr.add("x"); } if (soundAgc && (disableSoundProcessing == false) && !(audioSyncEnabled & 0x02)) { infoArr = user.createNestedArray(F("AGC Gain")); infoArr.add(roundf(multAgc*100.0f) / 100.0f); infoArr.add("x"); } // UDP Sound Sync status infoArr = user.createNestedArray(F("UDP Sound Sync")); if (audioSyncEnabled) { if (audioSyncEnabled & 0x01) { infoArr.add(F("send mode")); } else if (audioSyncEnabled & 0x02) { infoArr.add(F("receive mode")); } } else infoArr.add("off"); if (audioSyncEnabled && !udpSyncConnected) infoArr.add(" (unconnected)"); #ifdef WLED_DEBUG infoArr = user.createNestedArray(F("Sampling time")); infoArr.add(sampleTime); infoArr.add("ms"); infoArr = user.createNestedArray(F("FFT time")); infoArr.add(fftTime-sampleTime); infoArr.add("ms"); #endif } } /* * addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object). * Values in the state object may be modified by connected clients */ void addToJsonState(JsonObject& root) { if (!initDone) return; // prevent crash on boot applyPreset() JsonObject usermod = root[FPSTR(_name)]; if (usermod.isNull()) { usermod = root.createNestedObject(FPSTR(_name)); } usermod["on"] = enabled; } /* * readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object). * Values in the state object may be modified by connected clients */ void readFromJsonState(JsonObject& root) { if (!initDone) return; // prevent crash on boot applyPreset() bool prevEnabled = enabled; JsonObject usermod = root[FPSTR(_name)]; if (!usermod.isNull()) { if (usermod[FPSTR(_enabled)].is()) { enabled = usermod[FPSTR(_enabled)].as(); if (prevEnabled != enabled) onUpdateBegin(!enabled); } if (usermod[FPSTR(_inputLvl)].is()) { inputLevel = min(255,max(0,usermod[FPSTR(_inputLvl)].as())); } } } /* * addToConfig() can be used to add custom persistent settings to the cfg.json file in the "um" (usermod) object. * It will be called by WLED when settings are actually saved (for example, LED settings are saved) * If you want to force saving the current state, use serializeConfig() in your loop(). * * CAUTION: serializeConfig() will initiate a filesystem write operation. * It might cause the LEDs to stutter and will cause flash wear if called too often. * Use it sparingly and always in the loop, never in network callbacks! * * addToConfig() will make your settings editable through the Usermod Settings page automatically. * * Usermod Settings Overview: * - Numeric values are treated as floats in the browser. * - If the numeric value entered into the browser contains a decimal point, it will be parsed as a C float * before being returned to the Usermod. The float data type has only 6-7 decimal digits of precision, and * doubles are not supported, numbers will be rounded to the nearest float value when being parsed. * The range accepted by the input field is +/- 1.175494351e-38 to +/- 3.402823466e+38. * - If the numeric value entered into the browser doesn't contain a decimal point, it will be parsed as a * C int32_t (range: -2147483648 to 2147483647) before being returned to the usermod. * Overflows or underflows are truncated to the max/min value for an int32_t, and again truncated to the type * used in the Usermod when reading the value from ArduinoJson. * - Pin values can be treated differently from an integer value by using the key name "pin" * - "pin" can contain a single or array of integer values * - On the Usermod Settings page there is simple checking for pin conflicts and warnings for special pins * - Red color indicates a conflict. Yellow color indicates a pin with a warning (e.g. an input-only pin) * - Tip: use int8_t to store the pin value in the Usermod, so a -1 value (pin not set) can be used * * See usermod_v2_auto_save.h for an example that saves Flash space by reusing ArduinoJson key name strings * * If you need a dedicated settings page with custom layout for your Usermod, that takes a lot more work. * You will have to add the setting to the HTML, xml.cpp and set.cpp manually. * See the WLED Soundreactive fork (code and wiki) for reference. https://github.com/atuline/WLED * * I highly recommend checking out the basics of ArduinoJson serialization and deserialization in order to use custom settings! */ void addToConfig(JsonObject& root) { JsonObject top = root.createNestedObject(FPSTR(_name)); top[FPSTR(_enabled)] = enabled; JsonObject amic = top.createNestedObject(FPSTR(_analogmic)); amic["pin"] = audioPin; JsonObject dmic = top.createNestedObject(FPSTR(_digitalmic)); dmic[F("type")] = dmType; JsonArray pinArray = dmic.createNestedArray("pin"); pinArray.add(i2ssdPin); pinArray.add(i2swsPin); pinArray.add(i2sckPin); pinArray.add(mclkPin); pinArray.add(sdaPin); pinArray.add(sclPin); JsonObject cfg = top.createNestedObject("cfg"); cfg[F("squelch")] = soundSquelch; cfg[F("gain")] = sampleGain; cfg[F("AGC")] = soundAgc; JsonObject dynLim = top.createNestedObject("dynamics"); dynLim[F("Limiter")] = limiterOn; dynLim[F("Rise")] = attackTime; dynLim[F("Fall")] = decayTime; JsonObject freqScale = top.createNestedObject("Frequency"); freqScale[F("Scale")] = FFTScalingMode; JsonObject sync = top.createNestedObject("sync"); sync[F("port")] = audioSyncPort; sync[F("mode")] = audioSyncEnabled; } /* * readFromConfig() can be used to read back the custom settings you added with addToConfig(). * This is called by WLED when settings are loaded (currently this only happens immediately after boot, or after saving on the Usermod Settings page) * * readFromConfig() is called BEFORE setup(). This means you can use your persistent values in setup() (e.g. pin assignments, buffer sizes), * but also that if you want to write persistent values to a dynamic buffer, you'd need to allocate it here instead of in setup. * If you don't know what that is, don't fret. It most likely doesn't affect your use case :) * * Return true in case the config values returned from Usermod Settings were complete, or false if you'd like WLED to save your defaults to disk (so any missing values are editable in Usermod Settings) * * getJsonValue() returns false if the value is missing, or copies the value into the variable provided and returns true if the value is present * The configComplete variable is true only if the "exampleUsermod" object and all values are present. If any values are missing, WLED will know to call addToConfig() to save them * * This function is guaranteed to be called on boot, but could also be called every time settings are updated */ bool readFromConfig(JsonObject& root) { JsonObject top = root[FPSTR(_name)]; bool configComplete = !top.isNull(); configComplete &= getJsonValue(top[FPSTR(_enabled)], enabled); configComplete &= getJsonValue(top[FPSTR(_analogmic)]["pin"], audioPin); configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["type"], dmType); configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][0], i2ssdPin); configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][1], i2swsPin); configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][2], i2sckPin); configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][3], mclkPin); configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][4], sdaPin); configComplete &= getJsonValue(top[FPSTR(_digitalmic)]["pin"][5], sclPin); configComplete &= getJsonValue(top["cfg"][F("squelch")], soundSquelch); configComplete &= getJsonValue(top["cfg"][F("gain")], sampleGain); configComplete &= getJsonValue(top["cfg"][F("AGC")], soundAgc); configComplete &= getJsonValue(top["dynamics"][F("Limiter")], limiterOn); configComplete &= getJsonValue(top["dynamics"][F("Rise")], attackTime); configComplete &= getJsonValue(top["dynamics"][F("Fall")], decayTime); configComplete &= getJsonValue(top["Frequency"][F("Scale")], FFTScalingMode); configComplete &= getJsonValue(top["sync"][F("port")], audioSyncPort); configComplete &= getJsonValue(top["sync"][F("mode")], audioSyncEnabled); return configComplete; } void appendConfigData() { oappend(SET_F("dd=addDropdown('AudioReactive','digitalmic:type');")); oappend(SET_F("addOption(dd,'Generic Analog',0);")); oappend(SET_F("addOption(dd,'Generic I2S',1);")); oappend(SET_F("addOption(dd,'ES7243',2);")); oappend(SET_F("addOption(dd,'SPH0654',3);")); oappend(SET_F("addOption(dd,'Generic I2S with Mclk',4);")); oappend(SET_F("addOption(dd,'Generic I2S PDM',5);")); oappend(SET_F("dd=addDropdown('AudioReactive','cfg:AGC');")); oappend(SET_F("addOption(dd,'Off',0);")); oappend(SET_F("addOption(dd,'Normal',1);")); oappend(SET_F("addOption(dd,'Vivid',2);")); oappend(SET_F("addOption(dd,'Lazy',3);")); oappend(SET_F("dd=addDropdown('AudioReactive','dynamics:Limiter');")); oappend(SET_F("addOption(dd,'Off',0);")); oappend(SET_F("addOption(dd,'On',1);")); oappend(SET_F("addInfo('AudioReactive:dynamics:Limiter',0,' On ');")); // 0 is field type, 1 is actual field oappend(SET_F("addInfo('AudioReactive:dynamics:Rise',1,'ms (♪ effects only)');")); oappend(SET_F("addInfo('AudioReactive:dynamics:Fall',1,'ms (♪ effects only)');")); oappend(SET_F("dd=addDropdown('AudioReactive','Frequency:Scale');")); oappend(SET_F("addOption(dd,'None',0);")); oappend(SET_F("addOption(dd,'Linear (Amplitude)',2);")); oappend(SET_F("addOption(dd,'Square Root (Energy)',3);")); oappend(SET_F("addOption(dd,'Logarithmic (Loudness)',1);")); oappend(SET_F("dd=addDropdown('AudioReactive','sync:mode');")); oappend(SET_F("addOption(dd,'Off',0);")); oappend(SET_F("addOption(dd,'Send',1);")); oappend(SET_F("addOption(dd,'Receive',2);")); oappend(SET_F("addInfo('AudioReactive:digitalmic:type',1,'requires reboot!');")); // 0 is field type, 1 is actual field oappend(SET_F("addInfo('AudioReactive:digitalmic:pin[]',0,'I2S SD');")); oappend(SET_F("addInfo('AudioReactive:digitalmic:pin[]',1,'I2S WS');")); oappend(SET_F("addInfo('AudioReactive:digitalmic:pin[]',2,'I2S SCK');")); oappend(SET_F("addInfo('AudioReactive:digitalmic:pin[]',3,'I2S Master CLK');")); oappend(SET_F("addInfo('AudioReactive:digitalmic:pin[]',4,'I2C SDA');")); oappend(SET_F("addInfo('AudioReactive:digitalmic:pin[]',5,'I2C SCL');")); } /* * handleOverlayDraw() is called just before every show() (LED strip update frame) after effects have set the colors. * Use this to blank out some LEDs or set them to a different color regardless of the set effect mode. * Commonly used for custom clocks (Cronixie, 7 segment) */ //void handleOverlayDraw() //{ //strip.setPixelColor(0, RGBW32(0,0,0,0)) // set the first pixel to black //} /* * getId() allows you to optionally give your V2 usermod an unique ID (please define it in const.h!). * This could be used in the future for the system to determine whether your usermod is installed. */ uint16_t getId() { return USERMOD_ID_AUDIOREACTIVE; } }; // strings to reduce flash memory usage (used more than twice) const char AudioReactive::_name[] PROGMEM = "AudioReactive"; const char AudioReactive::_enabled[] PROGMEM = "enabled"; const char AudioReactive::_inputLvl[] PROGMEM = "inputLevel"; const char AudioReactive::_analogmic[] PROGMEM = "analogmic"; const char AudioReactive::_digitalmic[] PROGMEM = "digitalmic"; const char AudioReactive::UDP_SYNC_HEADER[] PROGMEM = "00002"; // new sync header version, as format no longer compatible with previous structure const char AudioReactive::UDP_SYNC_HEADER_v1[] PROGMEM = "00001"; // old sync header version - need to add backwards-compatibility feature