/* * Class implementation for addressing various light types */ #include #include #include "const.h" #include "pin_manager.h" #include "bus_wrapper.h" #include "bus_manager.h" //colors.cpp uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb); uint16_t approximateKelvinFromRGB(uint32_t rgb); void colorRGBtoRGBW(byte* rgb); //udp.cpp uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte *buffer, uint8_t bri=255, bool isRGBW=false); // enable additional debug output #if defined(WLED_DEBUG_HOST) #include "net_debug.h" #define DEBUGOUT NetDebug #else #define DEBUGOUT Serial #endif #ifdef WLED_DEBUG #ifndef ESP8266 #include #endif #define DEBUG_PRINT(x) DEBUGOUT.print(x) #define DEBUG_PRINTLN(x) DEBUGOUT.println(x) #define DEBUG_PRINTF(x...) DEBUGOUT.printf(x) #else #define DEBUG_PRINT(x) #define DEBUG_PRINTLN(x) #define DEBUG_PRINTF(x...) #endif //color mangling macros #define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b)))) #define R(c) (byte((c) >> 16)) #define G(c) (byte((c) >> 8)) #define B(c) (byte(c)) #define W(c) (byte((c) >> 24)) void ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) { if (_count >= WLED_MAX_COLOR_ORDER_MAPPINGS) { return; } if (len == 0) { return; } if (colorOrder > COL_ORDER_MAX) { return; } _mappings[_count].start = start; _mappings[_count].len = len; _mappings[_count].colorOrder = colorOrder; _count++; } uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const { if (_count == 0) return defaultColorOrder; // upper nibble containd W swap information uint8_t swapW = defaultColorOrder >> 4; for (uint8_t i = 0; i < _count; i++) { if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) { return _mappings[i].colorOrder | (swapW << 4); } } return defaultColorOrder; } uint32_t Bus::autoWhiteCalc(uint32_t c) { uint8_t aWM = _autoWhiteMode; if (_gAWM < 255) aWM = _gAWM; if (aWM == RGBW_MODE_MANUAL_ONLY) return c; uint8_t w = W(c); //ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0) if (w > 0 && aWM == RGBW_MODE_DUAL) return c; uint8_t r = R(c); uint8_t g = G(c); uint8_t b = B(c); if (aWM == RGBW_MODE_MAX) return RGBW32(r, g, b, r > g ? (r > b ? r : b) : (g > b ? g : b)); // brightest RGB channel w = r < g ? (r < b ? r : b) : (g < b ? g : b); if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode return RGBW32(r, g, b, w); } uint8_t *Bus::allocData(size_t size) { if (_data) free(_data); // should not happen, but for safety return _data = (uint8_t *)(size>0 ? calloc(size, sizeof(uint8_t)) : nullptr); } BusDigital::BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com) : Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814)) , _skip(bc.skipAmount) //sacrificial pixels , _colorOrder(bc.colorOrder) , _prevBri(255) , _colorOrderMap(com) , _dirty(false) { if (!IS_DIGITAL(bc.type) || !bc.count) return; if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return; _frequencykHz = 0U; _pins[0] = bc.pins[0]; if (IS_2PIN(bc.type)) { if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) { cleanup(); return; } _pins[1] = bc.pins[1]; _frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined } _iType = PolyBus::getI(bc.type, _pins, nr); if (_iType == I_NONE) return; if (bc.doubleBuffer && !allocData(bc.count * (Bus::hasWhite(_type) + 3*Bus::hasRGB(_type)))) return; //warning: hardcoded channel count _buffering = bc.doubleBuffer; uint16_t lenToCreate = bc.count; if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus _busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr, _frequencykHz); _valid = (_busPtr != nullptr); DEBUG_PRINTF("%successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u)\n", _valid?"S":"Uns", nr, bc.count, bc.type, _pins[0], _pins[1], _iType); } void BusDigital::show() { if (!_valid) return; if (_buffering) { // should be _data != nullptr, but that causes ~20% FPS drop size_t channels = Bus::hasWhite(_type) + 3*Bus::hasRGB(_type); for (size_t i=0; i<_len; i++) { size_t offset = i*channels; uint8_t co = _colorOrderMap.getPixelColorOrder(i+_start, _colorOrder); uint32_t c; if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs (_len is always a multiple of 3) switch (i%3) { case 0: c = RGBW32(_data[offset] , _data[offset+1], _data[offset+2], 0); break; case 1: c = RGBW32(_data[offset-1], _data[offset] , _data[offset+1], 0); break; case 2: c = RGBW32(_data[offset-2], _data[offset-1], _data[offset] , 0); break; } } else { c = RGBW32(_data[offset],_data[offset+1],_data[offset+2],(Bus::hasWhite(_type)?_data[offset+3]:0)); } uint16_t pix = i; if (_reversed) pix = _len - pix -1; else pix += _skip; PolyBus::setPixelColor(_busPtr, _iType, pix, c, co); } } PolyBus::show(_busPtr, _iType, !_buffering); // may be faster if buffer consistency is not important _dirty = false; } bool BusDigital::canShow() { if (!_valid) return true; return PolyBus::canShow(_busPtr, _iType); } void BusDigital::setBrightness(uint8_t b, bool updateNPBBuffer) { //Fix for turning off onboard LED breaking bus #ifdef LED_BUILTIN if (_bri == 0 && b > 0) { if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) reinit(); } #endif Bus::setBrightness(b); PolyBus::setBrightness(_busPtr, _iType, b); if (!_buffering && updateNPBBuffer) { PolyBus::applyPostAdjustments(_busPtr, _iType); _dirty = true; _prevBri = b; } } //If LEDs are skipped, it is possible to use the first as a status LED. //TODO only show if no new show due in the next 50ms void BusDigital::setStatusPixel(uint32_t c) { if (_valid && _skip) { PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder)); if (canShow()) PolyBus::show(_busPtr, _iType); } } void IRAM_ATTR BusDigital::setPixelColor(uint16_t pix, uint32_t c) { if (!_valid) return; if (Bus::hasWhite(_type)) c = autoWhiteCalc(c); if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT if (_buffering) { // should be _data != nullptr, but that causes ~20% FPS drop size_t channels = Bus::hasWhite(_type) + 3*Bus::hasRGB(_type); size_t offset = pix*channels; if (Bus::hasRGB(_type)) { _data[offset++] = R(c); _data[offset++] = G(c); _data[offset++] = B(c); } if (Bus::hasWhite(_type)) _data[offset] = W(c); } else { if (_reversed) pix = _len - pix -1; else pix += _skip; uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder); if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs uint16_t pOld = pix; pix = IC_INDEX_WS2812_1CH_3X(pix); uint32_t cOld = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, pix, co)); switch (pOld % 3) { // change only the single channel (TODO: this can cause loss because of get/set) case 0: c = RGBW32(R(cOld), W(c) , B(cOld), 0); break; case 1: c = RGBW32(W(c) , G(cOld), B(cOld), 0); break; case 2: c = RGBW32(R(cOld), G(cOld), W(c) , 0); break; } } PolyBus::setPixelColor(_busPtr, _iType, pix, c, co); } } // returns original color if global buffering is enabled, else returns lossly restored color from bus uint32_t BusDigital::getPixelColor(uint16_t pix) { if (!_valid) return 0; if (_buffering) { // should be _data != nullptr, but that causes ~20% FPS drop size_t channels = Bus::hasWhite(_type) + 3*Bus::hasRGB(_type); size_t offset = pix*channels; uint32_t c; if (!Bus::hasRGB(_type)) { c = RGBW32(_data[offset], _data[offset], _data[offset], _data[offset]); } else { c = RGBW32(_data[offset], _data[offset+1], _data[offset+2], Bus::hasWhite(_type) ? _data[offset+3] : 0); } return c; } else { if (_reversed) pix = _len - pix -1; else pix += _skip; uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder); uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, (_type==TYPE_WS2812_1CH_X3) ? IC_INDEX_WS2812_1CH_3X(pix) : pix, co)); if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs uint8_t r = R(c); uint8_t g = _reversed ? B(c) : G(c); // should G and B be switched if _reversed? uint8_t b = _reversed ? G(c) : B(c); switch (pix % 3) { // get only the single channel case 0: c = RGBW32(g, g, g, g); break; case 1: c = RGBW32(r, r, r, r); break; case 2: c = RGBW32(b, b, b, b); break; } } return c; } } uint8_t BusDigital::getPins(uint8_t* pinArray) { uint8_t numPins = IS_2PIN(_type) ? 2 : 1; for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i]; return numPins; } void BusDigital::setColorOrder(uint8_t colorOrder) { // upper nibble contains W swap information if ((colorOrder & 0x0F) > 5) return; _colorOrder = colorOrder; } void BusDigital::reinit() { if (!_valid) return; PolyBus::begin(_busPtr, _iType, _pins); } void BusDigital::cleanup() { DEBUG_PRINTLN(F("Digital Cleanup.")); PolyBus::cleanup(_busPtr, _iType); _iType = I_NONE; _valid = false; _busPtr = nullptr; if (_data != nullptr) freeData(); pinManager.deallocatePin(_pins[1], PinOwner::BusDigital); pinManager.deallocatePin(_pins[0], PinOwner::BusDigital); } BusPwm::BusPwm(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed) { if (!IS_PWM(bc.type)) return; uint8_t numPins = NUM_PWM_PINS(bc.type); _frequency = bc.frequency ? bc.frequency : WLED_PWM_FREQ; #ifdef ESP8266 analogWriteRange(255); //same range as one RGB channel analogWriteFreq(_frequency); #else _ledcStart = pinManager.allocateLedc(numPins); if (_ledcStart == 255) { //no more free LEDC channels deallocatePins(); return; } #endif for (uint8_t i = 0; i < numPins; i++) { uint8_t currentPin = bc.pins[i]; if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) { deallocatePins(); return; } _pins[i] = currentPin; //store only after allocatePin() succeeds #ifdef ESP8266 pinMode(_pins[i], OUTPUT); #else ledcSetup(_ledcStart + i, _frequency, 8); ledcAttachPin(_pins[i], _ledcStart + i); #endif } _data = _pwmdata; // avoid malloc() and use stack _valid = true; } void BusPwm::setPixelColor(uint16_t pix, uint32_t c) { if (pix != 0 || !_valid) return; //only react to first pixel if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c); if (_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) { c = colorBalanceFromKelvin(_cct, c); //color correction from CCT } uint8_t r = R(c); uint8_t g = G(c); uint8_t b = B(c); uint8_t w = W(c); uint8_t cct = 0; //0 - full warm white, 255 - full cold white if (_cct > -1) { if (_cct >= 1900) cct = (_cct - 1900) >> 5; else if (_cct < 256) cct = _cct; } else { cct = (approximateKelvinFromRGB(c) - 1900) >> 5; } uint8_t ww, cw; #ifdef WLED_USE_IC_CCT ww = w; cw = cct; #else //0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold) if (cct < _cctBlend) ww = 255; else ww = ((255-cct) * 255) / (255 - _cctBlend); if ((255-cct) < _cctBlend) cw = 255; else cw = (cct * 255) / (255 - _cctBlend); ww = (w * ww) / 255; //brightness scaling cw = (w * cw) / 255; #endif switch (_type) { case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation _data[0] = w; break; case TYPE_ANALOG_2CH: //warm white + cold white _data[1] = cw; _data[0] = ww; break; case TYPE_ANALOG_5CH: //RGB + warm white + cold white _data[4] = cw; w = ww; case TYPE_ANALOG_4CH: //RGBW _data[3] = w; case TYPE_ANALOG_3CH: //standard dumb RGB _data[0] = r; _data[1] = g; _data[2] = b; break; } } //does no index check uint32_t BusPwm::getPixelColor(uint16_t pix) { if (!_valid) return 0; return RGBW32(_data[0], _data[1], _data[2], _data[3]); } void BusPwm::show() { if (!_valid) return; uint8_t numPins = NUM_PWM_PINS(_type); for (uint8_t i = 0; i < numPins; i++) { uint8_t scaled = (_data[i] * _bri) / 255; if (_reversed) scaled = 255 - scaled; #ifdef ESP8266 analogWrite(_pins[i], scaled); #else ledcWrite(_ledcStart + i, scaled); #endif } } uint8_t BusPwm::getPins(uint8_t* pinArray) { if (!_valid) return 0; uint8_t numPins = NUM_PWM_PINS(_type); for (uint8_t i = 0; i < numPins; i++) { pinArray[i] = _pins[i]; } return numPins; } void BusPwm::deallocatePins() { uint8_t numPins = NUM_PWM_PINS(_type); for (uint8_t i = 0; i < numPins; i++) { pinManager.deallocatePin(_pins[i], PinOwner::BusPwm); if (!pinManager.isPinOk(_pins[i])) continue; #ifdef ESP8266 digitalWrite(_pins[i], LOW); //turn off PWM interrupt #else if (_ledcStart < 16) ledcDetachPin(_pins[i]); #endif } #ifdef ARDUINO_ARCH_ESP32 pinManager.deallocateLedc(_ledcStart, numPins); #endif } BusOnOff::BusOnOff(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed) , _onoffdata(0) { if (bc.type != TYPE_ONOFF) return; uint8_t currentPin = bc.pins[0]; if (!pinManager.allocatePin(currentPin, true, PinOwner::BusOnOff)) { return; } _pin = currentPin; //store only after allocatePin() succeeds pinMode(_pin, OUTPUT); _data = &_onoffdata; // avoid malloc() and use stack _valid = true; } void BusOnOff::setPixelColor(uint16_t pix, uint32_t c) { if (pix != 0 || !_valid) return; //only react to first pixel c = autoWhiteCalc(c); uint8_t r = R(c); uint8_t g = G(c); uint8_t b = B(c); uint8_t w = W(c); _data[0] = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0; } uint32_t BusOnOff::getPixelColor(uint16_t pix) { if (!_valid) return 0; return RGBW32(_data[0], _data[0], _data[0], _data[0]); } void BusOnOff::show() { if (!_valid) return; digitalWrite(_pin, _reversed ? !(bool)_data[0] : (bool)_data[0]); } uint8_t BusOnOff::getPins(uint8_t* pinArray) { if (!_valid) return 0; pinArray[0] = _pin; return 1; } BusNetwork::BusNetwork(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite, bc.count) , _broadcastLock(false) { switch (bc.type) { case TYPE_NET_ARTNET_RGB: _rgbw = false; _UDPtype = 2; break; case TYPE_NET_E131_RGB: _rgbw = false; _UDPtype = 1; break; default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW _rgbw = bc.type == TYPE_NET_DDP_RGBW; _UDPtype = 0; break; } _UDPchannels = _rgbw ? 4 : 3; _client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]); _valid = (allocData(_len * _UDPchannels) != nullptr); } void BusNetwork::setPixelColor(uint16_t pix, uint32_t c) { if (!_valid || pix >= _len) return; if (_rgbw) c = autoWhiteCalc(c); if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT uint16_t offset = pix * _UDPchannels; _data[offset] = R(c); _data[offset+1] = G(c); _data[offset+2] = B(c); if (_rgbw) _data[offset+3] = W(c); } uint32_t BusNetwork::getPixelColor(uint16_t pix) { if (!_valid || pix >= _len) return 0; uint16_t offset = pix * _UDPchannels; return RGBW32(_data[offset], _data[offset+1], _data[offset+2], (_rgbw ? _data[offset+3] : 0)); } void BusNetwork::show() { if (!_valid || !canShow()) return; _broadcastLock = true; realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw); _broadcastLock = false; } uint8_t BusNetwork::getPins(uint8_t* pinArray) { for (uint8_t i = 0; i < 4; i++) { pinArray[i] = _client[i]; } return 4; } void BusNetwork::cleanup() { _type = I_NONE; _valid = false; freeData(); } //utility to get the approx. memory usage of a given BusConfig uint32_t BusManager::memUsage(BusConfig &bc) { uint8_t type = bc.type; uint16_t len = bc.count + bc.skipAmount; if (type > 15 && type < 32) { // digital types if (type == TYPE_UCS8903 || type == TYPE_UCS8904) len *= 2; // 16-bit LEDs #ifdef ESP8266 if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem if (type > 28) return len*20; //RGBW return len*15; } if (type > 28) return len*4; //RGBW return len*3; #else //ESP32 RMT uses double buffer? if (type > 28) return len*8; //RGBW return len*6; #endif } if (type > 31 && type < 48) return 5; return len*3; //RGB } int BusManager::add(BusConfig &bc) { if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1; if (bc.type >= TYPE_NET_DDP_RGB && bc.type < 96) { busses[numBusses] = new BusNetwork(bc); } else if (IS_DIGITAL(bc.type)) { busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap); } else if (bc.type == TYPE_ONOFF) { busses[numBusses] = new BusOnOff(bc); } else { busses[numBusses] = new BusPwm(bc); } return numBusses++; } //do not call this method from system context (network callback) void BusManager::removeAll() { DEBUG_PRINTLN(F("Removing all.")); //prevents crashes due to deleting busses while in use. while (!canAllShow()) yield(); for (uint8_t i = 0; i < numBusses; i++) delete busses[i]; numBusses = 0; } void BusManager::show() { for (uint8_t i = 0; i < numBusses; i++) { busses[i]->show(); } } void BusManager::setStatusPixel(uint32_t c) { for (uint8_t i = 0; i < numBusses; i++) { busses[i]->setStatusPixel(c); } } void IRAM_ATTR BusManager::setPixelColor(uint16_t pix, uint32_t c) { for (uint8_t i = 0; i < numBusses; i++) { Bus* b = busses[i]; uint16_t bstart = b->getStart(); if (pix < bstart || pix >= bstart + b->getLength()) continue; busses[i]->setPixelColor(pix - bstart, c); } } void BusManager::setBrightness(uint8_t b, bool updateBuffer) { for (uint8_t i = 0; i < numBusses; i++) { busses[i]->setBrightness(b, updateBuffer); } } void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) { if (cct > 255) cct = 255; if (cct >= 0) { //if white balance correction allowed, save as kelvin value instead of 0-255 if (allowWBCorrection) cct = 1900 + (cct << 5); } else cct = -1; Bus::setCCT(cct); } uint32_t BusManager::getPixelColor(uint16_t pix) { for (uint8_t i = 0; i < numBusses; i++) { Bus* b = busses[i]; uint16_t bstart = b->getStart(); if (pix < bstart || pix >= bstart + b->getLength()) continue; return b->getPixelColor(pix - bstart); } return 0; } bool BusManager::canAllShow() { for (uint8_t i = 0; i < numBusses; i++) { if (!busses[i]->canShow()) return false; } return true; } Bus* BusManager::getBus(uint8_t busNr) { if (busNr >= numBusses) return nullptr; return busses[busNr]; } //semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit()) uint16_t BusManager::getTotalLength() { uint16_t len = 0; for (uint8_t i=0; igetLength(); return len; } // Bus static member definition int16_t Bus::_cct = -1; uint8_t Bus::_cctBlend = 0; uint8_t Bus::_gAWM = 255;