#include "src/dependencies/timezone/Timezone.h" #include "wled.h" #ifndef WLED_USE_REAL_MATH #include "wled_math.h" #else #define sin_t sin #define cos_t cos #define tan_t tan #define asin_t asin #define acos_t acos #define atan_t atan #define fmod_t fmod #define floor_t floor #endif /* * Acquires time from NTP server */ //#define WLED_DEBUG_NTP #define NTP_SYNC_INTERVAL 42000UL //Get fresh NTP time about twice per day Timezone* tz; #define TZ_UTC 0 #define TZ_UK 1 #define TZ_EUROPE_CENTRAL 2 #define TZ_EUROPE_EASTERN 3 #define TZ_US_EASTERN 4 #define TZ_US_CENTRAL 5 #define TZ_US_MOUNTAIN 6 #define TZ_US_ARIZONA 7 #define TZ_US_PACIFIC 8 #define TZ_CHINA 9 #define TZ_JAPAN 10 #define TZ_AUSTRALIA_EASTERN 11 #define TZ_NEW_ZEALAND 12 #define TZ_NORTH_KOREA 13 #define TZ_INDIA 14 #define TZ_SASKACHEWAN 15 #define TZ_AUSTRALIA_NORTHERN 16 #define TZ_AUSTRALIA_SOUTHERN 17 #define TZ_HAWAII 18 #define TZ_NOVOSIBIRSK 19 #define TZ_INIT 255 byte tzCurrent = TZ_INIT; //uninitialized void updateTimezone() { delete tz; TimeChangeRule tcrDaylight = {Last, Sun, Mar, 1, 0}; //UTC TimeChangeRule tcrStandard = tcrDaylight; //UTC switch (currentTimezone) { case TZ_UK : { tcrDaylight = {Last, Sun, Mar, 1, 60}; //British Summer Time tcrStandard = {Last, Sun, Oct, 2, 0}; //Standard Time break; } case TZ_EUROPE_CENTRAL : { tcrDaylight = {Last, Sun, Mar, 2, 120}; //Central European Summer Time tcrStandard = {Last, Sun, Oct, 3, 60}; //Central European Standard Time break; } case TZ_EUROPE_EASTERN : { tcrDaylight = {Last, Sun, Mar, 3, 180}; //East European Summer Time tcrStandard = {Last, Sun, Oct, 4, 120}; //East European Standard Time break; } case TZ_US_EASTERN : { tcrDaylight = {Second, Sun, Mar, 2, -240}; //EDT = UTC - 4 hours tcrStandard = {First, Sun, Nov, 2, -300}; //EST = UTC - 5 hours break; } case TZ_US_CENTRAL : { tcrDaylight = {Second, Sun, Mar, 2, -300}; //CDT = UTC - 5 hours tcrStandard = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours break; } case TZ_US_MOUNTAIN : { tcrDaylight = {Second, Sun, Mar, 2, -360}; //MDT = UTC - 6 hours tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours break; } case TZ_US_ARIZONA : { tcrDaylight = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours break; } case TZ_US_PACIFIC : { tcrDaylight = {Second, Sun, Mar, 2, -420}; //PDT = UTC - 7 hours tcrStandard = {First, Sun, Nov, 2, -480}; //PST = UTC - 8 hours break; } case TZ_CHINA : { tcrDaylight = {Last, Sun, Mar, 1, 480}; //CST = UTC + 8 hours tcrStandard = tcrDaylight; break; } case TZ_JAPAN : { tcrDaylight = {Last, Sun, Mar, 1, 540}; //JST = UTC + 9 hours tcrStandard = tcrDaylight; break; } case TZ_AUSTRALIA_EASTERN : { tcrDaylight = {Second, Sun, Oct, 2, 660}; //AEDT = UTC + 11 hours tcrStandard = {First, Sun, Apr, 3, 600}; //AEST = UTC + 10 hours break; } case TZ_NEW_ZEALAND : { tcrDaylight = {Second, Sun, Sep, 2, 780}; //NZDT = UTC + 13 hours tcrStandard = {First, Sun, Apr, 3, 720}; //NZST = UTC + 12 hours break; } case TZ_NORTH_KOREA : { tcrDaylight = {Last, Sun, Mar, 1, 510}; //Pyongyang Time = UTC + 8.5 hours tcrStandard = tcrDaylight; break; } case TZ_INDIA : { tcrDaylight = {Last, Sun, Mar, 1, 330}; //India Standard Time = UTC + 5.5 hours tcrStandard = tcrDaylight; break; } case TZ_SASKACHEWAN : { tcrDaylight = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours tcrStandard = tcrDaylight; break; } case TZ_AUSTRALIA_NORTHERN : { tcrDaylight = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours tcrStandard = tcrDaylight; break; } case TZ_AUSTRALIA_SOUTHERN : { tcrDaylight = {First, Sun, Oct, 2, 630}; //ACDT = UTC + 10.5 hours tcrStandard = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours break; } case TZ_HAWAII : { tcrDaylight = {Last, Sun, Mar, 1, -600}; //HST = UTC - 10 hours tcrStandard = tcrDaylight; break; } case TZ_NOVOSIBIRSK : { tcrDaylight = {Last, Sun, Mar, 1, 420}; //CST = UTC + 7 hours tcrStandard = tcrDaylight; break; } } tzCurrent = currentTimezone; tz = new Timezone(tcrDaylight, tcrStandard); } void handleTime() { handleNetworkTime(); toki.millisecond(); toki.setTick(); if (toki.isTick()) //true only in the first loop after a new second started { #ifdef WLED_DEBUG_NTP Serial.print(F("TICK! ")); toki.printTime(toki.getTime()); #endif updateLocalTime(); checkTimers(); checkCountdown(); handleOverlays(); } } void handleNetworkTime() { if (ntpEnabled && ntpConnected && millis() - ntpLastSyncTime > (1000*NTP_SYNC_INTERVAL) && WLED_CONNECTED) { if (millis() - ntpPacketSentTime > 10000) { sendNTPPacket(); ntpPacketSentTime = millis(); } if (checkNTPResponse()) { ntpLastSyncTime = millis(); } } } void sendNTPPacket() { if (!ntpServerIP.fromString(ntpServerName)) //see if server is IP or domain { #ifdef ESP8266 WiFi.hostByName(ntpServerName, ntpServerIP, 750); #else WiFi.hostByName(ntpServerName, ntpServerIP); #endif } DEBUG_PRINTLN(F("send NTP")); byte pbuf[NTP_PACKET_SIZE]; memset(pbuf, 0, NTP_PACKET_SIZE); pbuf[0] = 0b11100011; // LI, Version, Mode pbuf[1] = 0; // Stratum, or type of clock pbuf[2] = 6; // Polling Interval pbuf[3] = 0xEC; // Peer Clock Precision // 8 bytes of zero for Root Delay & Root Dispersion pbuf[12] = 49; pbuf[13] = 0x4E; pbuf[14] = 49; pbuf[15] = 52; ntpUdp.beginPacket(ntpServerIP, 123); //NTP requests are to port 123 ntpUdp.write(pbuf, NTP_PACKET_SIZE); ntpUdp.endPacket(); } bool checkNTPResponse() { int cb = ntpUdp.parsePacket(); if (!cb) return false; uint32_t ntpPacketReceivedTime = millis(); DEBUG_PRINT(F("NTP recv, l=")); DEBUG_PRINTLN(cb); byte pbuf[NTP_PACKET_SIZE]; ntpUdp.read(pbuf, NTP_PACKET_SIZE); // read the packet into the buffer Toki::Time arrived = toki.fromNTP(pbuf + 32); Toki::Time departed = toki.fromNTP(pbuf + 40); if (departed.sec == 0) return false; //basic half roundtrip estimation uint32_t serverDelay = toki.msDifference(arrived, departed); uint32_t offset = (ntpPacketReceivedTime - ntpPacketSentTime - serverDelay) >> 1; #ifdef WLED_DEBUG_NTP //the time the packet departed the NTP server toki.printTime(departed); #endif toki.adjust(departed, offset); toki.setTime(departed, TOKI_TS_NTP); #ifdef WLED_DEBUG_NTP Serial.print("Arrived: "); toki.printTime(arrived); Serial.print("Time: "); toki.printTime(departed); Serial.print("Roundtrip: "); Serial.println(ntpPacketReceivedTime - ntpPacketSentTime); Serial.print("Offset: "); Serial.println(offset); Serial.print("Serverdelay: "); Serial.println(serverDelay); #endif if (countdownTime - toki.second() > 0) countdownOverTriggered = false; // if time changed re-calculate sunrise/sunset updateLocalTime(); calculateSunriseAndSunset(); return true; } void updateLocalTime() { if (currentTimezone != tzCurrent) updateTimezone(); unsigned long tmc = toki.second()+ utcOffsetSecs; localTime = tz->toLocal(tmc); } void getTimeString(char* out) { updateLocalTime(); byte hr = hour(localTime); if (useAMPM) { if (hr > 11) hr -= 12; if (hr == 0) hr = 12; } sprintf_P(out,PSTR("%i-%i-%i, %02d:%02d:%02d"),year(localTime), month(localTime), day(localTime), hr, minute(localTime), second(localTime)); if (useAMPM) { strcat(out,(hour(localTime) > 11)? " PM":" AM"); } } void setCountdown() { if (currentTimezone != tzCurrent) updateTimezone(); countdownTime = tz->toUTC(getUnixTime(countdownHour, countdownMin, countdownSec, countdownDay, countdownMonth, countdownYear)); if (countdownTime - toki.second() > 0) countdownOverTriggered = false; } //returns true if countdown just over bool checkCountdown() { unsigned long n = toki.second(); if (countdownMode) localTime = countdownTime - n + utcOffsetSecs; if (n > countdownTime) { if (countdownMode) localTime = n - countdownTime + utcOffsetSecs; if (!countdownOverTriggered) { if (macroCountdown != 0) applyPreset(macroCountdown); countdownOverTriggered = true; return true; } } return false; } byte weekdayMondayFirst() { byte wd = weekday(localTime) -1; if (wd == 0) wd = 7; return wd; } void checkTimers() { if (lastTimerMinute != minute(localTime)) //only check once a new minute begins { lastTimerMinute = minute(localTime); // re-calculate sunrise and sunset just after midnight if (!hour(localTime) && minute(localTime)==1) calculateSunriseAndSunset(); DEBUG_PRINTF("Local time: %02d:%02d\n", hour(localTime), minute(localTime)); for (uint8_t i = 0; i < 8; i++) { if (timerMacro[i] != 0 && (timerHours[i] == hour(localTime) || timerHours[i] == 24) //if hour is set to 24, activate every hour && timerMinutes[i] == minute(localTime) && (timerWeekday[i] & 0x01) //timer is enabled && ((timerWeekday[i] >> weekdayMondayFirst()) & 0x01)) //timer should activate at current day of week { applyPreset(timerMacro[i]); } } // sunrise macro if (sunrise) { time_t tmp = sunrise + timerMinutes[8]*60; // NOTE: may not be ok DEBUG_PRINTF("Trigger time: %02d:%02d\n", hour(tmp), minute(tmp)); if (timerMacro[8] != 0 && hour(tmp) == hour(localTime) && minute(tmp) == minute(localTime) && (timerWeekday[8] & 0x01) //timer is enabled && ((timerWeekday[8] >> weekdayMondayFirst()) & 0x01)) //timer should activate at current day of week { applyPreset(timerMacro[8]); DEBUG_PRINTF("Sunrise macro %d triggered.",timerMacro[8]); } } // sunset macro if (sunset) { time_t tmp = sunset + timerMinutes[9]*60; // NOTE: may not be ok DEBUG_PRINTF("Trigger time: %02d:%02d\n", hour(tmp), minute(tmp)); if (timerMacro[9] != 0 && hour(tmp) == hour(localTime) && minute(tmp) == minute(localTime) && (timerWeekday[9] & 0x01) //timer is enabled && ((timerWeekday[9] >> weekdayMondayFirst()) & 0x01)) //timer should activate at current day of week { applyPreset(timerMacro[9]); DEBUG_PRINTF("Sunset macro %d triggered.",timerMacro[9]); } } } } #define ZENITH -0.83 // get sunrise (or sunset) time (in minutes) for a given day at a given geo location int getSunriseUTC(int year, int month, int day, float lat, float lon, bool sunset=false) { //1. first calculate the day of the year float N1 = 275 * month / 9; float N2 = (month + 9) / 12; float N3 = (1 + floor_t((year - 4 * floor_t(year / 4) + 2) / 3)); float N = N1 - (N2 * N3) + day - 30; //2. convert the longitude to hour value and calculate an approximate time float lngHour = lon / 15.0f; float t = N + (((sunset ? 18 : 6) - lngHour) / 24); //3. calculate the Sun's mean anomaly float M = (0.9856f * t) - 3.289f; //4. calculate the Sun's true longitude float L = fmod_t(M + (1.916f * sin_t(DEG_TO_RAD*M)) + (0.02f * sin_t(2*DEG_TO_RAD*M)) + 282.634f, 360.0f); //5a. calculate the Sun's right ascension float RA = fmod_t(RAD_TO_DEG*atan_t(0.91764f * tan_t(DEG_TO_RAD*L)), 360.0f); //5b. right ascension value needs to be in the same quadrant as L float Lquadrant = floor_t( L/90) * 90; float RAquadrant = floor_t(RA/90) * 90; RA = RA + (Lquadrant - RAquadrant); //5c. right ascension value needs to be converted into hours RA /= 15.0f; //6. calculate the Sun's declination float sinDec = 0.39782f * sin_t(DEG_TO_RAD*L); float cosDec = cos_t(asin_t(sinDec)); //7a. calculate the Sun's local hour angle float cosH = (sin_t(DEG_TO_RAD*ZENITH) - (sinDec * sin_t(DEG_TO_RAD*lat))) / (cosDec * cos_t(DEG_TO_RAD*lat)); if (cosH > 1 && !sunset) return 0; // the sun never rises on this location (on the specified date) if (cosH < -1 && sunset) return 0; // the sun never sets on this location (on the specified date) //7b. finish calculating H and convert into hours float H = sunset ? RAD_TO_DEG*acos_t(cosH) : 360 - RAD_TO_DEG*acos_t(cosH); H /= 15.0f; //8. calculate local mean time of rising/setting float T = H + RA - (0.06571f * t) - 6.622f; //9. adjust back to UTC float UT = fmod_t(T - lngHour, 24.0f); // return in minutes from midnight return UT*60; } // calculate sunrise and sunset (if longitude and latitude are set) void calculateSunriseAndSunset() { if ((int)(longitude*10.) || (int)(latitude*10.)) { struct tm tim_0; tim_0.tm_year = year(localTime)-1900; tim_0.tm_mon = month(localTime)-1; tim_0.tm_mday = day(localTime); tim_0.tm_sec = 0; tim_0.tm_isdst = 0; int minUTC = getSunriseUTC(year(localTime), month(localTime), day(localTime), latitude, longitude); if (minUTC) { // there is a sunrise tim_0.tm_hour = minUTC / 60; tim_0.tm_min = minUTC % 60; sunrise = tz->toLocal(mktime(&tim_0) - utcOffsetSecs); DEBUG_PRINTF("Sunrise: %02d:%02d\n", hour(sunrise), minute(sunrise)); } else { sunrise = 0; } minUTC = getSunriseUTC(year(localTime), month(localTime), day(localTime), latitude, longitude, true); if (minUTC) { // there is a sunset tim_0.tm_hour = minUTC / 60; tim_0.tm_min = minUTC % 60; sunset = tz->toLocal(mktime(&tim_0) - utcOffsetSecs); DEBUG_PRINTF("Sunset: %02d:%02d\n", hour(sunset), minute(sunset)); } else { sunset = 0; } } } //time from JSON and HTTP API void setTimeFromAPI(uint32_t timein) { if (timein == 0 || timein == UINT32_MAX) return; uint32_t prev = toki.second(); //only apply if more accurate or there is a significant difference to the "more accurate" time source uint32_t diff = (timein > prev) ? timein - prev : prev - timein; if (toki.getTimeSource() > TOKI_TS_JSON && diff < 60U) return; toki.setTime(timein, TOKI_NO_MS_ACCURACY, TOKI_TS_JSON); if (diff >= 60U) { updateLocalTime(); calculateSunriseAndSunset(); } if (presetsModifiedTime == 0) presetsModifiedTime = timein; }