#ifndef BusManager_h #define BusManager_h /* * Class for addressing various light types */ #include "const.h" #include "pin_manager.h" #include "bus_wrapper.h" #include //temporary struct for passing bus configuration to bus struct BusConfig { uint8_t type = TYPE_WS2812_RGB; uint16_t count = 1; uint16_t start = 0; uint8_t colorOrder = COL_ORDER_GRB; bool reversed = false; uint8_t skipAmount; uint8_t pins[5] = {LEDPIN, 255, 255, 255, 255}; BusConfig(uint8_t busType, uint8_t* ppins, uint16_t pstart, uint16_t len = 1, uint8_t pcolorOrder = COL_ORDER_GRB, bool rev = false, uint8_t skip=0) { type = busType; count = len; start = pstart; colorOrder = pcolorOrder; reversed = rev; skipAmount = skip; uint8_t nPins = 1; if (type > 47) nPins = 2; else if (type > 40 && type < 46) nPins = NUM_PWM_PINS(type); for (uint8_t i = 0; i < nPins; i++) pins[i] = ppins[i]; } //validates start and length and extends total if needed bool adjustBounds(uint16_t& total) { if (!count) count = 1; if (count > MAX_LEDS_PER_BUS) count = MAX_LEDS_PER_BUS; if (start >= MAX_LEDS) return false; //limit length of strip if it would exceed total permissible LEDs if (start + count > MAX_LEDS) count = MAX_LEDS - start; //extend total count accordingly if (start + count > total) total = start + count; return true; } }; //parent class of BusDigital and BusPwm class Bus { public: Bus(uint8_t type, uint16_t start) { _type = type; _start = start; }; virtual void show() {} virtual bool canShow() { return true; } virtual void setPixelColor(uint16_t pix, uint32_t c) {}; virtual void setBrightness(uint8_t b) {}; virtual uint32_t getPixelColor(uint16_t pix) { return 0; }; virtual void cleanup() {}; virtual ~Bus() { //throw the bus under the bus } virtual uint8_t getPins(uint8_t* pinArray) { return 0; } inline uint16_t getStart() { return _start; } inline void setStart(uint16_t start) { _start = start; } virtual uint16_t getLength() { return 1; } virtual void setColorOrder() {} virtual uint8_t getColorOrder() { return COL_ORDER_RGB; } virtual bool isRgbw() { return false; } virtual uint8_t skippedLeds() { return 0; } inline uint8_t getType() { return _type; } inline bool isOk() { return _valid; } static bool isRgbw(uint8_t type) { if (type == TYPE_SK6812_RGBW || type == TYPE_TM1814) return true; if (type > TYPE_ONOFF && type <= TYPE_ANALOG_5CH && type != TYPE_ANALOG_3CH) return true; return false; } bool reversed = false; protected: uint8_t _type = TYPE_NONE; uint8_t _bri = 255; uint16_t _start = 0; bool _valid = false; }; class BusDigital : public Bus { public: BusDigital(BusConfig &bc, uint8_t nr) : Bus(bc.type, bc.start) { if (!IS_DIGITAL(bc.type) || !bc.count) return; _pins[0] = bc.pins[0]; if (!pinManager.allocatePin(_pins[0])) return; if (IS_2PIN(bc.type)) { _pins[1] = bc.pins[1]; if (!pinManager.allocatePin(_pins[1])) { cleanup(); return; } } reversed = bc.reversed; _skip = bc.skipAmount; //sacrificial pixels _len = bc.count + _skip; _iType = PolyBus::getI(bc.type, _pins, nr); if (_iType == I_NONE) return; _busPtr = PolyBus::create(_iType, _pins, _len, nr); _valid = (_busPtr != nullptr); _colorOrder = bc.colorOrder; //Serial.printf("Successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u)\n",nr, len, type, pins[0],pins[1],_iType); }; inline void show() { PolyBus::show(_busPtr, _iType); } inline bool canShow() { return PolyBus::canShow(_busPtr, _iType); } void setBrightness(uint8_t b) { //Fix for turning off onboard LED breaking bus #ifdef LED_BUILTIN if (_bri == 0 && b > 0) { if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) PolyBus::begin(_busPtr, _iType, _pins); } #endif _bri = b; PolyBus::setBrightness(_busPtr, _iType, b); } void setPixelColor(uint16_t pix, uint32_t c) { if (reversed) pix = _len - pix -1; else pix += _skip; PolyBus::setPixelColor(_busPtr, _iType, pix, c, _colorOrder); } uint32_t getPixelColor(uint16_t pix) { if (reversed) pix = _len - pix -1; else pix += _skip; return PolyBus::getPixelColor(_busPtr, _iType, pix, _colorOrder); } inline uint8_t getColorOrder() { return _colorOrder; } inline uint16_t getLength() { return _len - _skip; } uint8_t getPins(uint8_t* pinArray) { uint8_t numPins = IS_2PIN(_type) ? 2 : 1; for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i]; return numPins; } void setColorOrder(uint8_t colorOrder) { if (colorOrder > 5) return; _colorOrder = colorOrder; } inline bool isRgbw() { return (_type == TYPE_SK6812_RGBW || _type == TYPE_TM1814); } inline uint8_t skippedLeds() { return _skip; } inline void reinit() { PolyBus::begin(_busPtr, _iType, _pins); } void cleanup() { //Serial.println("Digital Cleanup"); PolyBus::cleanup(_busPtr, _iType); _iType = I_NONE; _valid = false; _busPtr = nullptr; pinManager.deallocatePin(_pins[0]); pinManager.deallocatePin(_pins[1]); } ~BusDigital() { cleanup(); } private: uint8_t _colorOrder = COL_ORDER_GRB; uint8_t _pins[2] = {255, 255}; uint8_t _iType = I_NONE; uint16_t _len = 0; uint8_t _skip = 0; void * _busPtr = nullptr; }; class BusPwm : public Bus { public: BusPwm(BusConfig &bc) : Bus(bc.type, bc.start) { if (!IS_PWM(bc.type)) return; uint8_t numPins = NUM_PWM_PINS(bc.type); #ifdef ESP8266 analogWriteRange(255); //same range as one RGB channel analogWriteFreq(WLED_PWM_FREQ); #else _ledcStart = pinManager.allocateLedc(numPins); if (_ledcStart == 255) { //no more free LEDC channels deallocatePins(); return; } #endif for (uint8_t i = 0; i < numPins; i++) { _pins[i] = bc.pins[i]; if (!pinManager.allocatePin(_pins[i])) { deallocatePins(); return; } #ifdef ESP8266 pinMode(_pins[i], OUTPUT); #else ledcSetup(_ledcStart + i, WLED_PWM_FREQ, 8); ledcAttachPin(_pins[i], _ledcStart + i); #endif } reversed = bc.reversed; _valid = true; }; void setPixelColor(uint16_t pix, uint32_t c) { if (pix != 0 || !_valid) return; //only react to first pixel uint8_t r = c >> 16; uint8_t g = c >> 8; uint8_t b = c ; uint8_t w = c >> 24; switch (_type) { case TYPE_ANALOG_1CH: //one channel (white), use highest RGBW value _data[0] = max(r, max(g, max(b, w))); break; case TYPE_ANALOG_2CH: //warm white + cold white, we'll need some nice handling here, for now just R+G channels case TYPE_ANALOG_3CH: //standard dumb RGB case TYPE_ANALOG_4CH: //RGBW case TYPE_ANALOG_5CH: //we'll want the white handling from 2CH here + RGB _data[0] = r; _data[1] = g; _data[2] = b; _data[3] = w; _data[4] = 0; break; default: return; } } //does no index check uint32_t getPixelColor(uint16_t pix) { return ((_data[3] << 24) | (_data[0] << 16) | (_data[1] << 8) | (_data[2])); } void show() { uint8_t numPins = NUM_PWM_PINS(_type); for (uint8_t i = 0; i < numPins; i++) { uint8_t scaled = (_data[i] * _bri) / 255; if (reversed) scaled = 255 - scaled; #ifdef ESP8266 analogWrite(_pins[i], scaled); #else ledcWrite(_ledcStart + i, scaled); #endif } } inline void setBrightness(uint8_t b) { _bri = b; } uint8_t getPins(uint8_t* pinArray) { uint8_t numPins = NUM_PWM_PINS(_type); for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i]; return numPins; } bool isRgbw() { return (_type > TYPE_ONOFF && _type <= TYPE_ANALOG_5CH && _type != TYPE_ANALOG_3CH); } inline void cleanup() { deallocatePins(); } ~BusPwm() { cleanup(); } private: uint8_t _pins[5] = {255, 255, 255, 255, 255}; uint8_t _data[5] = {255, 255, 255, 255, 255}; #ifdef ARDUINO_ARCH_ESP32 uint8_t _ledcStart = 255; #endif void deallocatePins() { uint8_t numPins = NUM_PWM_PINS(_type); for (uint8_t i = 0; i < numPins; i++) { if (!pinManager.isPinOk(_pins[i])) continue; #ifdef ESP8266 digitalWrite(_pins[i], LOW); //turn off PWM interrupt #else if (_ledcStart < 16) ledcDetachPin(_pins[i]); #endif pinManager.deallocatePin(_pins[i]); } #ifdef ARDUINO_ARCH_ESP32 pinManager.deallocateLedc(_ledcStart, numPins); #endif } }; class BusManager { public: BusManager() { }; //utility to get the approx. memory usage of a given BusConfig static uint32_t memUsage(BusConfig &bc) { uint8_t type = bc.type; uint16_t len = bc.count; if (type < 32) { #ifdef ESP8266 if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem if (type > 29) return len*20; //RGBW return len*15; } if (type > 29) return len*4; //RGBW return len*3; #else //ESP32 RMT uses double buffer? if (type > 29) return len*8; //RGBW return len*6; #endif } if (type > 31 && type < 48) return 5; if (type == 44 || type == 45) return len*4; //RGBW return len*3; } int add(BusConfig &bc) { if (numBusses >= WLED_MAX_BUSSES) return -1; if (IS_DIGITAL(bc.type)) { busses[numBusses] = new BusDigital(bc, numBusses); } else { busses[numBusses] = new BusPwm(bc); } return numBusses++; } //do not call this method from system context (network callback) void removeAll() { //Serial.println("Removing all."); //prevents crashes due to deleting busses while in use. while (!canAllShow()) yield(); for (uint8_t i = 0; i < numBusses; i++) delete busses[i]; numBusses = 0; } void show() { for (uint8_t i = 0; i < numBusses; i++) { busses[i]->show(); } } void setPixelColor(uint16_t pix, uint32_t c) { for (uint8_t i = 0; i < numBusses; i++) { Bus* b = busses[i]; uint16_t bstart = b->getStart(); if (pix < bstart || pix >= bstart + b->getLength()) continue; busses[i]->setPixelColor(pix - bstart, c); break; } } void setBrightness(uint8_t b) { for (uint8_t i = 0; i < numBusses; i++) { busses[i]->setBrightness(b); } } uint32_t getPixelColor(uint16_t pix) { for (uint8_t i = 0; i < numBusses; i++) { Bus* b = busses[i]; uint16_t bstart = b->getStart(); if (pix < bstart || pix >= bstart + b->getLength()) continue; return b->getPixelColor(pix - bstart); } return 0; } bool canAllShow() { for (uint8_t i = 0; i < numBusses; i++) { if (!busses[i]->canShow()) return false; } return true; } Bus* getBus(uint8_t busNr) { if (busNr >= numBusses) return nullptr; return busses[busNr]; } inline uint8_t getNumBusses() { return numBusses; } uint16_t getTotalLength() { uint16_t len = 0; for (uint8_t i=0; igetLength(); return len; } static inline bool isRgbw(uint8_t type) { return Bus::isRgbw(type); } //Return true if the strip requires a refresh to stay off. static bool isOffRefreshRequred(uint8_t type) { return type == TYPE_TM1814; } private: uint8_t numBusses = 0; Bus* busses[WLED_MAX_BUSSES]; }; #endif