/* FX_2Dfcn.cpp contains all 2D utility functions LICENSE The MIT License (MIT) Copyright (c) 2022 Blaz Kristan (https://blaz.at/home) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Parts of the code adapted from WLED Sound Reactive */ #include "wled.h" #include "FX.h" #include "palettes.h" // setUpMatrix() - constructs ledmap array from matrix of panels with WxH pixels // this converts physical (possibly irregular) LED arrangement into well defined // array of logical pixels: fist entry corresponds to left-topmost logical pixel // followed by horizontal pixels, when Segment::maxWidth logical pixels are added they // are followed by next row (down) of Segment::maxWidth pixels (and so forth) // note: matrix may be comprised of multiple panels each with different orientation // but ledmap takes care of that. ledmap is constructed upon initialization // so matrix should disable regular ledmap processing void WS2812FX::setUpMatrix() { #ifndef WLED_DISABLE_2D // erase old ledmap, just in case. if (customMappingTable != nullptr) delete[] customMappingTable; customMappingTable = nullptr; customMappingSize = 0; // isMatrix is set in cfg.cpp or set.cpp if (isMatrix) { // calculate width dynamically because it will have gaps Segment::maxWidth = 1; Segment::maxHeight = 1; for (size_t i = 0; i < panel.size(); i++) { Panel &p = panel[i]; if (p.xOffset + p.width > Segment::maxWidth) { Segment::maxWidth = p.xOffset + p.width; } if (p.yOffset + p.height > Segment::maxHeight) { Segment::maxHeight = p.yOffset + p.height; } } // safety check if (Segment::maxWidth * Segment::maxHeight > MAX_LEDS || Segment::maxWidth <= 1 || Segment::maxHeight <= 1) { DEBUG_PRINTLN(F("2D Bounds error.")); isMatrix = false; Segment::maxWidth = _length; Segment::maxHeight = 1; panels = 0; panel.clear(); // release memory allocated by panels resetSegments(); return; } customMappingTable = new uint16_t[Segment::maxWidth * Segment::maxHeight]; if (customMappingTable != nullptr) { customMappingSize = Segment::maxWidth * Segment::maxHeight; // fill with empty in case we don't fill the entire matrix for (size_t i = 0; i< customMappingSize; i++) { customMappingTable[i] = (uint16_t)-1; } // we will try to load a "gap" array (a JSON file) // the array has to have the same amount of values as mapping array (or larger) // "gap" array is used while building ledmap (mapping array) // and discarded afterwards as it has no meaning after the process // content of the file is just raw JSON array in the form of [val1,val2,val3,...] // there are no other "key":"value" pairs in it // allowed values are: -1 (missing pixel/no LED attached), 0 (inactive/unused pixel), 1 (active/used pixel) char fileName[32]; strcpy_P(fileName, PSTR("/2d-gaps.json")); // reduce flash footprint bool isFile = WLED_FS.exists(fileName); size_t gapSize = 0; int8_t *gapTable = nullptr; if (isFile && requestJSONBufferLock(20)) { DEBUG_PRINT(F("Reading LED gap from ")); DEBUG_PRINTLN(fileName); // read the array into global JSON buffer if (readObjectFromFile(fileName, nullptr, &doc)) { // the array is similar to ledmap, except it has only 3 values: // -1 ... missing pixel (do not increase pixel count) // 0 ... inactive pixel (it does count, but should be mapped out (-1)) // 1 ... active pixel (it will count and will be mapped) JsonArray map = doc.as(); gapSize = map.size(); if (!map.isNull() && gapSize >= customMappingSize) { // not an empty map gapTable = new int8_t[gapSize]; if (gapTable) for (size_t i = 0; i < gapSize; i++) { gapTable[i] = constrain(map[i], -1, 1); } } } DEBUG_PRINTLN(F("Gaps loaded.")); releaseJSONBufferLock(); } uint16_t x, y, pix=0; //pixel for (size_t pan = 0; pan < panel.size(); pan++) { Panel &p = panel[pan]; uint16_t h = p.vertical ? p.height : p.width; uint16_t v = p.vertical ? p.width : p.height; for (size_t j = 0; j < v; j++){ for(size_t i = 0; i < h; i++) { y = (p.vertical?p.rightStart:p.bottomStart) ? v-j-1 : j; x = (p.vertical?p.bottomStart:p.rightStart) ? h-i-1 : i; x = p.serpentine && j%2 ? h-x-1 : x; size_t index = (p.yOffset + (p.vertical?x:y)) * Segment::maxWidth + p.xOffset + (p.vertical?y:x); if (!gapTable || (gapTable && gapTable[index] > 0)) customMappingTable[index] = pix; // a useful pixel (otherwise -1 is retained) if (!gapTable || (gapTable && gapTable[index] >= 0)) pix++; // not a missing pixel } } } // delete gap array as we no longer need it if (gapTable) delete[] gapTable; #ifdef WLED_DEBUG DEBUG_PRINT(F("Matrix ledmap:")); for (uint16_t i=0; i= _length) return; busses.setPixelColor(index, col); } // returns RGBW values of pixel uint32_t WS2812FX::getPixelColorXY(uint16_t x, uint16_t y) { #ifndef WLED_DISABLE_2D uint16_t index = (y * Segment::maxWidth + x); #else uint16_t index = x; #endif if (index < customMappingSize) index = customMappingTable[index]; if (index >= _length) return 0; return busses.getPixelColor(index); } /////////////////////////////////////////////////////////// // Segment:: routines /////////////////////////////////////////////////////////// #ifndef WLED_DISABLE_2D // XY(x,y) - gets pixel index within current segment (often used to reference leds[] array element) uint16_t /*IRAM_ATTR*/ Segment::XY(uint16_t x, uint16_t y) { uint16_t width = virtualWidth(); // segment width in logical pixels (can be 0 if segment is inactive) uint16_t height = virtualHeight(); // segment height in logical pixels (is always >= 1) return isActive() ? (x%width) + (y%height) * width : 0; } void /*IRAM_ATTR*/ Segment::setPixelColorXY(int x, int y, uint32_t col) { if (!isActive()) return; // not active if (x >= virtualWidth() || y >= virtualHeight() || x<0 || y<0) return; // if pixel would fall out of virtual segment just exit uint8_t _bri_t = currentBri(on ? opacity : 0); if (_bri_t < 255) { byte r = scale8(R(col), _bri_t); byte g = scale8(G(col), _bri_t); byte b = scale8(B(col), _bri_t); byte w = scale8(W(col), _bri_t); col = RGBW32(r, g, b, w); } if (reverse ) x = virtualWidth() - x - 1; if (reverse_y) y = virtualHeight() - y - 1; if (transpose) { uint16_t t = x; x = y; y = t; } // swap X & Y if segment transposed x *= groupLength(); // expand to physical pixels y *= groupLength(); // expand to physical pixels if (x >= width() || y >= height()) return; // if pixel would fall out of segment just exit for (int j = 0; j < grouping; j++) { // groupping vertically for (int g = 0; g < grouping; g++) { // groupping horizontally uint16_t xX = (x+g), yY = (y+j); if (xX >= width() || yY >= height()) continue; // we have reached one dimension's end strip.setPixelColorXY(start + xX, startY + yY, col); if (mirror) { //set the corresponding horizontally mirrored pixel if (transpose) strip.setPixelColorXY(start + xX, startY + height() - yY - 1, col); else strip.setPixelColorXY(start + width() - xX - 1, startY + yY, col); } if (mirror_y) { //set the corresponding vertically mirrored pixel if (transpose) strip.setPixelColorXY(start + width() - xX - 1, startY + yY, col); else strip.setPixelColorXY(start + xX, startY + height() - yY - 1, col); } if (mirror_y && mirror) { //set the corresponding vertically AND horizontally mirrored pixel strip.setPixelColorXY(width() - xX - 1, height() - yY - 1, col); } } } } // anti-aliased version of setPixelColorXY() void Segment::setPixelColorXY(float x, float y, uint32_t col, bool aa) { if (!isActive()) return; // not active if (x<0.0f || x>1.0f || y<0.0f || y>1.0f) return; // not normalized const uint16_t cols = virtualWidth(); const uint16_t rows = virtualHeight(); float fX = x * (cols-1); float fY = y * (rows-1); if (aa) { uint16_t xL = roundf(fX-0.49f); uint16_t xR = roundf(fX+0.49f); uint16_t yT = roundf(fY-0.49f); uint16_t yB = roundf(fY+0.49f); float dL = (fX - xL)*(fX - xL); float dR = (xR - fX)*(xR - fX); float dT = (fY - yT)*(fY - yT); float dB = (yB - fY)*(yB - fY); uint32_t cXLYT = getPixelColorXY(xL, yT); uint32_t cXRYT = getPixelColorXY(xR, yT); uint32_t cXLYB = getPixelColorXY(xL, yB); uint32_t cXRYB = getPixelColorXY(xR, yB); if (xL!=xR && yT!=yB) { setPixelColorXY(xL, yT, color_blend(col, cXLYT, uint8_t(sqrtf(dL*dT)*255.0f))); // blend TL pixel setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(sqrtf(dR*dT)*255.0f))); // blend TR pixel setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(sqrtf(dL*dB)*255.0f))); // blend BL pixel setPixelColorXY(xR, yB, color_blend(col, cXRYB, uint8_t(sqrtf(dR*dB)*255.0f))); // blend BR pixel } else if (xR!=xL && yT==yB) { setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dL*255.0f))); // blend L pixel setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(dR*255.0f))); // blend R pixel } else if (xR==xL && yT!=yB) { setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dT*255.0f))); // blend T pixel setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(dB*255.0f))); // blend B pixel } else { setPixelColorXY(xL, yT, col); // exact match (x & y land on a pixel) } } else { setPixelColorXY(uint16_t(roundf(fX)), uint16_t(roundf(fY)), col); } } // returns RGBW values of pixel uint32_t Segment::getPixelColorXY(uint16_t x, uint16_t y) { if (!isActive()) return 0; // not active if (x >= virtualWidth() || y >= virtualHeight() || x<0 || y<0) return 0; // if pixel would fall out of virtual segment just exit if (reverse ) x = virtualWidth() - x - 1; if (reverse_y) y = virtualHeight() - y - 1; if (transpose) { uint16_t t = x; x = y; y = t; } // swap X & Y if segment transposed x *= groupLength(); // expand to physical pixels y *= groupLength(); // expand to physical pixels if (x >= width() || y >= height()) return 0; return strip.getPixelColorXY(start + x, startY + y); } // Blends the specified color with the existing pixel color. void Segment::blendPixelColorXY(uint16_t x, uint16_t y, uint32_t color, uint8_t blend) { setPixelColorXY(x, y, color_blend(getPixelColorXY(x,y), color, blend)); } // Adds the specified color with the existing pixel color perserving color balance. void Segment::addPixelColorXY(int x, int y, uint32_t color, bool fast) { if (!isActive()) return; // not active if (x >= virtualWidth() || y >= virtualHeight() || x<0 || y<0) return; // if pixel would fall out of virtual segment just exit uint32_t col = getPixelColorXY(x,y); uint8_t r = R(col); uint8_t g = G(col); uint8_t b = B(col); uint8_t w = W(col); if (fast) { r = qadd8(r, R(color)); g = qadd8(g, G(color)); b = qadd8(b, B(color)); w = qadd8(w, W(color)); col = RGBW32(r,g,b,w); } else { col = color_add(col, color); } setPixelColorXY(x, y, col); } void Segment::fadePixelColorXY(uint16_t x, uint16_t y, uint8_t fade) { if (!isActive()) return; // not active CRGB pix = CRGB(getPixelColorXY(x,y)).nscale8_video(fade); setPixelColorXY(x, y, pix); } // blurRow: perform a blur on a row of a rectangular matrix void Segment::blurRow(uint16_t row, fract8 blur_amount) { if (!isActive()) return; // not active const uint_fast16_t cols = virtualWidth(); const uint_fast16_t rows = virtualHeight(); if (row >= rows) return; // blur one row uint8_t keep = 255 - blur_amount; uint8_t seep = blur_amount >> 1; CRGB carryover = CRGB::Black; for (uint_fast16_t x = 0; x < cols; x++) { CRGB cur = getPixelColorXY(x, row); CRGB before = cur; // remember color before blur CRGB part = cur; part.nscale8(seep); cur.nscale8(keep); cur += carryover; if (x>0) { CRGB prev = CRGB(getPixelColorXY(x-1, row)) + part; setPixelColorXY(x-1, row, prev); } if (before != cur) // optimization: only set pixel if color has changed setPixelColorXY(x, row, cur); carryover = part; } } // blurCol: perform a blur on a column of a rectangular matrix void Segment::blurCol(uint16_t col, fract8 blur_amount) { if (!isActive()) return; // not active const uint_fast16_t cols = virtualWidth(); const uint_fast16_t rows = virtualHeight(); if (col >= cols) return; // blur one column uint8_t keep = 255 - blur_amount; uint8_t seep = blur_amount >> 1; CRGB carryover = CRGB::Black; for (uint_fast16_t y = 0; y < rows; y++) { CRGB cur = getPixelColorXY(col, y); CRGB part = cur; CRGB before = cur; // remember color before blur part.nscale8(seep); cur.nscale8(keep); cur += carryover; if (y>0) { CRGB prev = CRGB(getPixelColorXY(col, y-1)) + part; setPixelColorXY(col, y-1, prev); } if (before != cur) // optimization: only set pixel if color has changed setPixelColorXY(col, y, cur); carryover = part; } } // 1D Box blur (with added weight - blur_amount: [0=no blur, 255=max blur]) void Segment::box_blur(uint16_t i, bool vertical, fract8 blur_amount) { if (!isActive()) return; // not active const uint16_t cols = virtualWidth(); const uint16_t rows = virtualHeight(); const uint16_t dim1 = vertical ? rows : cols; const uint16_t dim2 = vertical ? cols : rows; if (i >= dim2) return; const float seep = blur_amount/255.f; const float keep = 3.f - 2.f*seep; // 1D box blur CRGB tmp[dim1]; for (uint16_t j = 0; j < dim1; j++) { uint16_t x = vertical ? i : j; uint16_t y = vertical ? j : i; int16_t xp = vertical ? x : x-1; // "signed" to prevent underflow int16_t yp = vertical ? y-1 : y; // "signed" to prevent underflow uint16_t xn = vertical ? x : x+1; uint16_t yn = vertical ? y+1 : y; CRGB curr = getPixelColorXY(x,y); CRGB prev = (xp<0 || yp<0) ? CRGB::Black : getPixelColorXY(xp,yp); CRGB next = ((vertical && yn>=dim1) || (!vertical && xn>=dim1)) ? CRGB::Black : getPixelColorXY(xn,yn); uint16_t r, g, b; r = (curr.r*keep + (prev.r + next.r)*seep) / 3; g = (curr.g*keep + (prev.g + next.g)*seep) / 3; b = (curr.b*keep + (prev.b + next.b)*seep) / 3; tmp[j] = CRGB(r,g,b); } for (uint16_t j = 0; j < dim1; j++) { uint16_t x = vertical ? i : j; uint16_t y = vertical ? j : i; setPixelColorXY(x, y, tmp[j]); } } // blur1d: one-dimensional blur filter. Spreads light to 2 line neighbors. // blur2d: two-dimensional blur filter. Spreads light to 8 XY neighbors. // // 0 = no spread at all // 64 = moderate spreading // 172 = maximum smooth, even spreading // // 173..255 = wider spreading, but increasing flicker // // Total light is NOT entirely conserved, so many repeated // calls to 'blur' will also result in the light fading, // eventually all the way to black; this is by design so that // it can be used to (slowly) clear the LEDs to black. void Segment::blur1d(fract8 blur_amount) { const uint16_t rows = virtualHeight(); for (uint16_t y = 0; y < rows; y++) blurRow(y, blur_amount); } void Segment::moveX(int8_t delta, bool wrap) { if (!isActive()) return; // not active const uint16_t cols = virtualWidth(); const uint16_t rows = virtualHeight(); if (!delta || abs(delta) >= cols) return; uint32_t newPxCol[cols]; for (int y = 0; y < rows; y++) { if (delta > 0) { for (int x = 0; x < cols-delta; x++) newPxCol[x] = getPixelColorXY((x + delta), y); for (int x = cols-delta; x < cols; x++) newPxCol[x] = getPixelColorXY(wrap ? (x + delta) - cols : x, y); } else { for (int x = cols-1; x >= -delta; x--) newPxCol[x] = getPixelColorXY((x + delta), y); for (int x = -delta-1; x >= 0; x--) newPxCol[x] = getPixelColorXY(wrap ? (x + delta) + cols : x, y); } for (int x = 0; x < cols; x++) setPixelColorXY(x, y, newPxCol[x]); } } void Segment::moveY(int8_t delta, bool wrap) { if (!isActive()) return; // not active const uint16_t cols = virtualWidth(); const uint16_t rows = virtualHeight(); if (!delta || abs(delta) >= rows) return; uint32_t newPxCol[rows]; for (int x = 0; x < cols; x++) { if (delta > 0) { for (int y = 0; y < rows-delta; y++) newPxCol[y] = getPixelColorXY(x, (y + delta)); for (int y = rows-delta; y < rows; y++) newPxCol[y] = getPixelColorXY(x, wrap ? (y + delta) - rows : y); } else { for (int y = rows-1; y >= -delta; y--) newPxCol[y] = getPixelColorXY(x, (y + delta)); for (int y = -delta-1; y >= 0; y--) newPxCol[y] = getPixelColorXY(x, wrap ? (y + delta) + rows : y); } for (int y = 0; y < rows; y++) setPixelColorXY(x, y, newPxCol[y]); } } // move() - move all pixels in desired direction delta number of pixels // @param dir direction: 0=left, 1=left-up, 2=up, 3=right-up, 4=right, 5=right-down, 6=down, 7=left-down // @param delta number of pixels to move // @param wrap around void Segment::move(uint8_t dir, uint8_t delta, bool wrap) { if (delta==0) return; switch (dir) { case 0: moveX( delta, wrap); break; case 1: moveX( delta, wrap); moveY( delta, wrap); break; case 2: moveY( delta, wrap); break; case 3: moveX(-delta, wrap); moveY( delta, wrap); break; case 4: moveX(-delta, wrap); break; case 5: moveX(-delta, wrap); moveY(-delta, wrap); break; case 6: moveY(-delta, wrap); break; case 7: moveX( delta, wrap); moveY(-delta, wrap); break; } } void Segment::draw_circle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB col) { if (!isActive()) return; // not active // Bresenham’s Algorithm int d = 3 - (2*radius); int y = radius, x = 0; while (y >= x) { setPixelColorXY(cx+x, cy+y, col); setPixelColorXY(cx-x, cy+y, col); setPixelColorXY(cx+x, cy-y, col); setPixelColorXY(cx-x, cy-y, col); setPixelColorXY(cx+y, cy+x, col); setPixelColorXY(cx-y, cy+x, col); setPixelColorXY(cx+y, cy-x, col); setPixelColorXY(cx-y, cy-x, col); x++; if (d > 0) { y--; d += 4 * (x - y) + 10; } else { d += 4 * x + 6; } } } // by stepko, taken from https://editor.soulmatelights.com/gallery/573-blobs void Segment::fill_circle(uint16_t cx, uint16_t cy, uint8_t radius, CRGB col) { if (!isActive()) return; // not active const uint16_t cols = virtualWidth(); const uint16_t rows = virtualHeight(); for (int16_t y = -radius; y <= radius; y++) { for (int16_t x = -radius; x <= radius; x++) { if (x * x + y * y <= radius * radius && int16_t(cx)+x>=0 && int16_t(cy)+y>=0 && int16_t(cx)+x= cols || x1 >= cols || y0 >= rows || y1 >= rows) return; const int16_t dx = abs(x1-x0), sx = x0dy ? dx : -dy)/2, e2; for (;;) { setPixelColorXY(x0,y0,c); if (x0==x1 && y0==y1) break; e2 = err; if (e2 >-dx) { err -= dy; x0 += sx; } if (e2 < dy) { err += dx; y0 += sy; } } } #include "src/font/console_font_4x6.h" #include "src/font/console_font_5x8.h" #include "src/font/console_font_5x12.h" #include "src/font/console_font_6x8.h" #include "src/font/console_font_7x9.h" #include "src/font/console_font_12x16.h" #include "src/font/console_font_12x24.h" #include "src/font/console_font_16x32.h" #include "src/font/console_font_25x57.h" // draws a raster font character on canvas // only supports: 4x6=24, 5x8=40, 5x12=60, 6x8=48, 7x9=63, 12x16=192, 16x24=288, 16x32=512 and 25x57=1425 fonts ATM void Segment::drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, uint32_t color, uint32_t col2) { if (chr < 32 || chr > 126) return; // only ASCII 32-126 supported chr -= 32; // align with font table entries const uint16_t cols = virtualWidth(); const uint16_t rows = virtualHeight(); const int font = w*h; int num_bytes; if (w <= 8) { num_bytes = 1; } else if(w <= 16){ num_bytes = 2; } else if (w <= 24){ num_bytes = 3; } else if (w <= 32){ num_bytes = 4; } else { return; } CRGB col = CRGB(color); CRGBPalette16 grad = CRGBPalette16(col, col2 ? CRGB(col2) : col); // modifications to support characters whose width is > 8 bits //if (w<5 || w>6 || h!=8) return; for (int i = 0; i= rows) break; // drawing off-screen const uint8_t *bits = 0; switch (font) { case 24: bits = &console_font_4x6[(chr * h * num_bytes) + (i * num_bytes)]; break; // 5x8 font case 40: bits = &console_font_5x8[(chr * h * num_bytes) + (i * num_bytes)]; break; // 5x8 font case 48: bits = &console_font_6x8[(chr * h * num_bytes) + (i * num_bytes)]; break; // 6x8 font case 63: bits = &console_font_7x9[(chr * h * num_bytes) + (i * num_bytes)]; break; // 7x9 font case 60: bits = &console_font_5x12[(chr * h * num_bytes) + (i * num_bytes)]; break; // 5x12 font case 192: bits = &console_font_12x16[(chr * h * num_bytes) + (i * num_bytes)]; break; // 12x16 font case 288: bits = &console_font_12x24[(chr * h * num_bytes) + (i * num_bytes)]; break; // 16x24 font case 512: bits = &console_font_16x32[(chr * h * num_bytes) + (i * num_bytes)]; break; // 16x32 font case 1425: bits = &console_font_25x57[(chr * h * num_bytes) + (i * num_bytes)]; break; // 25x57 font default: return; } int j1 = 0; int wb = w % 8; if(wb == 0) wb = 8; // get width of the first byte to process for (int k = 1; k <= num_bytes; k++) { // loop through all bytes of the character col = ColorFromPalette(grad, (i+1)*255/h, 255, NOBLEND); for (int j = 0; j= 0 || x0 < cols) && ((bits[num_bytes - k]>>(j+(8-wb))) & 0x01)) { // bit set & drawing on-screen setPixelColorXY(x0, y0, col); } } wb = 8; // process 8 bits for all other bytes } } } #define WU_WEIGHT(a,b) ((uint8_t) (((a)*(b)+(a)+(b))>>8)) void Segment::wu_pixel(uint32_t x, uint32_t y, CRGB c) { //awesome wu_pixel procedure by reddit u/sutaburosu if (!isActive()) return; // not active // extract the fractional parts and derive their inverses uint8_t xx = x & 0xff, yy = y & 0xff, ix = 255 - xx, iy = 255 - yy; // calculate the intensities for each affected pixel uint8_t wu[4] = {WU_WEIGHT(ix, iy), WU_WEIGHT(xx, iy), WU_WEIGHT(ix, yy), WU_WEIGHT(xx, yy)}; // multiply the intensities by the colour, and saturating-add them to the pixels for (int i = 0; i < 4; i++) { CRGB led = getPixelColorXY((x >> 8) + (i & 1), (y >> 8) + ((i >> 1) & 1)); led.r = qadd8(led.r, c.r * wu[i] >> 8); led.g = qadd8(led.g, c.g * wu[i] >> 8); led.b = qadd8(led.b, c.b * wu[i] >> 8); setPixelColorXY(int((x >> 8) + (i & 1)), int((y >> 8) + ((i >> 1) & 1)), led); } } #undef WU_WEIGHT #endif // WLED_DISABLE_2D