#pragma once #include "wled.h" #include //DS18B20 //Pin defaults for QuinLed Dig-Uno if not overriden #ifndef TEMPERATURE_PIN #ifdef ARDUINO_ARCH_ESP32 #define TEMPERATURE_PIN 18 #else //ESP8266 boards #define TEMPERATURE_PIN 14 #endif #endif // the frequency to check temperature, 1 minute #ifndef USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL #define USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL 60000 #endif // how many seconds after boot to take first measurement, 20 seconds #ifndef USERMOD_DALLASTEMPERATURE_FIRST_MEASUREMENT_AT #define USERMOD_DALLASTEMPERATURE_FIRST_MEASUREMENT_AT 20000 #endif // strings const char _um_Temperature[] PROGMEM = "Temperature"; class UsermodTemperature : public Usermod { private: bool initDone = false; OneWire *oneWire; DallasTemperature *sensor; // The device's unique 64-bit serial code stored in on-board ROM. // Reading directly from the sensor device address is faster than // reading from index. When reading by index, DallasTemperature // must first look up the device address at the specified index. DeviceAddress sensorDeviceAddress; // GPIO pin used for sensor (with a default compile-time fallback) int8_t temperaturePin = TEMPERATURE_PIN; // measurement unit (true==°C, false==°F) bool degC = true; // set last reading as "40 sec before boot", so first reading is taken after 20 sec unsigned long lastMeasurement = UINT32_MAX - (USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL - USERMOD_DALLASTEMPERATURE_FIRST_MEASUREMENT_AT); // last time requestTemperatures was called // used to determine when we can read the sensors temperature // we have to wait at least 93.75 ms after requestTemperatures() is called unsigned long lastTemperaturesRequest; float temperature = -100; // default to -100, DS18B20 only goes down to -50C // indicates requestTemperatures has been called but the sensor measurement is not complete bool waitingForConversion = false; // flag to indicate we have finished the first getTemperature call // allows this library to report to the user how long until the first // measurement bool getTemperatureComplete = false; // flag set at startup if DS18B20 sensor not found, avoids trying to keep getting // temperature if flashed to a board without a sensor attached bool disabled = false; void requestTemperatures() { // there is requestTemperaturesByAddress however it // appears to do more work, // TODO: measure exection time difference sensor->requestTemperatures(); lastTemperaturesRequest = millis(); waitingForConversion = true; } void getTemperature() { if (strip.isUpdating()) return; if (degC) temperature = sensor->getTempC(sensorDeviceAddress); else temperature = sensor->getTempF(sensorDeviceAddress); lastMeasurement = millis(); waitingForConversion = false; getTemperatureComplete = true; } public: void setup() { // pin retrieved from cfg.json (readFromConfig()) prior to running setup() if (!pinManager.allocatePin(temperaturePin,false)) { temperaturePin = -1; // allocation failed DEBUG_PRINTLN(F("Temperature pin allocation failed.")); } else { oneWire = new OneWire(temperaturePin); sensor = new DallasTemperature(oneWire); if (sensor) sensor->begin(); else DEBUG_PRINTLN(F("Temperature sensor allocation failed.")); } // get the unique 64-bit serial code stored in on-board ROM // if getAddress returns false, the sensor was not found disabled = (temperaturePin==-1) || !sensor->getAddress(sensorDeviceAddress, 0); if (!disabled) { DEBUG_PRINTLN(F("Dallas Temperature found")); // set the resolution for this specific device sensor->setResolution(sensorDeviceAddress, 9, true); // do not block waiting for reading sensor->setWaitForConversion(false); } else { DEBUG_PRINTLN(F("Dallas Temperature not found")); } initDone = true; } void loop() { if (disabled || strip.isUpdating()) return; unsigned long now = millis(); // check to see if we are due for taking a measurement // lastMeasurement will not be updated until the conversion // is complete the the reading is finished if (now - lastMeasurement < USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL) return; // we are due for a measurement, if we are not already waiting // for a conversion to complete, then make a new request for temps if (!waitingForConversion) { requestTemperatures(); return; } // we were waiting for a conversion to complete, have we waited log enough? if (now - lastTemperaturesRequest >= 95 /* 93.75ms per the datasheet */) { getTemperature(); if (WLED_MQTT_CONNECTED) { char subuf[64]; strcpy(subuf, mqttDeviceTopic); if (-100 <= temperature) { // dont publish super low temperature as the graph will get messed up // the DallasTemperature library returns -127C or -196.6F when problem // reading the sensor strcat_P(subuf, PSTR("/temperature")); mqtt->publish(subuf, 0, true, String(temperature).c_str()); } else { // publish something else to indicate status? } } } } /* * addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API. * Creating an "u" object allows you to add custom key/value pairs to the Info section of the WLED web UI. * Below it is shown how this could be used for e.g. a light sensor */ void addToJsonInfo(JsonObject& root) { // dont add temperature to info if we are disabled if (disabled) return; JsonObject user = root["u"]; if (user.isNull()) user = root.createNestedObject("u"); JsonArray temp = user.createNestedArray(FPSTR(_um_Temperature)); //temp.add(F("Loaded.")); if (!getTemperatureComplete) { // if we haven't read the sensor yet, let the user know // that we are still waiting for the first measurement temp.add((USERMOD_DALLASTEMPERATURE_FIRST_MEASUREMENT_AT - millis()) / 1000); temp.add(F(" sec until read")); return; } if (temperature <= -100) { temp.add(0); temp.add(F(" Sensor Error!")); return; } temp.add(temperature); if (degC) temp.add(F("°C")); else temp.add(F("°F")); } /** * addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object). * Values in the state object may be modified by connected clients */ //void addToJsonState(JsonObject &root) //{ //} /** * readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object). * Values in the state object may be modified by connected clients * Read "_" from json state and and change settings (i.e. GPIO pin) used. */ void readFromJsonState(JsonObject &root) { if (!initDone) return; // prevent crash on boot applyPreset() if (root[F("Temperature_pin")] != nullptr) { int8_t pin = min(39,max(0,(int)root[F("Temperature_pin")])); if (pin != temperaturePin) { // deallocate pin and release memory delete sensor; delete oneWire; pinManager.deallocatePin(temperaturePin); // disable usermod temperaturePin = -1; disabled = true; // check if pin is OK if (pin>=0 && pinManager.allocatePin(pin,false)) { // allocat memory oneWire = new OneWire(pin); sensor = new DallasTemperature(oneWire); if (sensor) { temperaturePin = pin; sensor->begin(); disabled = !sensor->getAddress(sensorDeviceAddress, 0); } else { pinManager.deallocatePin(pin); } } } } if (root[F("Temperature_degC")] != nullptr) { String strDegC = root[F("Temperature_degC")]; // checkbox -> off or on degC = (bool) (strDegC!="off"); // off is guaranteed to be present } } /** * addToConfig() (called from set.cpp) stores persistent properties to cfg.json */ void addToConfig(JsonObject &root) { // we add JSON object: {"Temperature": {"pin": 0, "degC": true}} JsonObject top = root.createNestedObject(FPSTR(_um_Temperature)); // usermodname top["pin"] = temperaturePin; // usermodparam top["degC"] = degC; // usermodparam } /** * readFromConfig() is called before setup() to populate properties from values stored in cfg.json */ void readFromConfig(JsonObject &root) { // we look for JSON object: {"Temperature": {"pin": 0, "degC": true}} JsonObject top = root[FPSTR(_um_Temperature)]; if (!top.isNull() && top["pin"] != nullptr) { temperaturePin = (int)top["pin"]; degC = top["degC"] != nullptr ? top["degC"] : true; } else { DEBUG_PRINTLN(F("No config found. (Using defaults.)")); } } uint16_t getId() { return USERMOD_ID_TEMPERATURE; } };