#include "src/dependencies/timezone/Timezone.h" #include "wled.h" /* * Acquires time from NTP server */ Timezone* tz; #define TZ_UTC 0 #define TZ_UK 1 #define TZ_EUROPE_CENTRAL 2 #define TZ_EUROPE_EASTERN 3 #define TZ_US_EASTERN 4 #define TZ_US_CENTRAL 5 #define TZ_US_MOUNTAIN 6 #define TZ_US_ARIZONA 7 #define TZ_US_PACIFIC 8 #define TZ_CHINA 9 #define TZ_JAPAN 10 #define TZ_AUSTRALIA_EASTERN 11 #define TZ_NEW_ZEALAND 12 #define TZ_NORTH_KOREA 13 #define TZ_INDIA 14 #define TZ_SASKACHEWAN 15 #define TZ_AUSTRALIA_NORTHERN 16 #define TZ_AUSTRALIA_SOUTHERN 17 #define TZ_HAWAII 18 #define TZ_INIT 255 byte tzCurrent = TZ_INIT; //uninitialized void updateTimezone() { delete tz; TimeChangeRule tcrDaylight = {Last, Sun, Mar, 1, 0}; //UTC TimeChangeRule tcrStandard = tcrDaylight; //UTC switch (currentTimezone) { case TZ_UK : { tcrDaylight = {Last, Sun, Mar, 1, 60}; //British Summer Time tcrStandard = {Last, Sun, Oct, 2, 0}; //Standard Time break; } case TZ_EUROPE_CENTRAL : { tcrDaylight = {Last, Sun, Mar, 2, 120}; //Central European Summer Time tcrStandard = {Last, Sun, Oct, 3, 60}; //Central European Standard Time break; } case TZ_EUROPE_EASTERN : { tcrDaylight = {Last, Sun, Mar, 3, 180}; //East European Summer Time tcrStandard = {Last, Sun, Oct, 4, 120}; //East European Standard Time break; } case TZ_US_EASTERN : { tcrDaylight = {Second, Sun, Mar, 2, -240}; //EDT = UTC - 4 hours tcrStandard = {First, Sun, Nov, 2, -300}; //EST = UTC - 5 hours break; } case TZ_US_CENTRAL : { tcrDaylight = {Second, Sun, Mar, 2, -300}; //CDT = UTC - 5 hours tcrStandard = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours break; } case TZ_US_MOUNTAIN : { tcrDaylight = {Second, Sun, Mar, 2, -360}; //MDT = UTC - 6 hours tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours break; } case TZ_US_ARIZONA : { tcrDaylight = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours break; } case TZ_US_PACIFIC : { tcrDaylight = {Second, Sun, Mar, 2, -420}; //PDT = UTC - 7 hours tcrStandard = {First, Sun, Nov, 2, -480}; //PST = UTC - 8 hours break; } case TZ_CHINA : { tcrDaylight = {Last, Sun, Mar, 1, 480}; //CST = UTC + 8 hours tcrStandard = tcrDaylight; break; } case TZ_JAPAN : { tcrDaylight = {Last, Sun, Mar, 1, 540}; //JST = UTC + 9 hours tcrStandard = tcrDaylight; break; } case TZ_AUSTRALIA_EASTERN : { tcrDaylight = {Second, Sun, Oct, 2, 660}; //AEDT = UTC + 11 hours tcrStandard = {First, Sun, Apr, 3, 600}; //AEST = UTC + 10 hours break; } case TZ_NEW_ZEALAND : { tcrDaylight = {Second, Sun, Sep, 2, 780}; //NZDT = UTC + 13 hours tcrStandard = {First, Sun, Apr, 3, 720}; //NZST = UTC + 12 hours break; } case TZ_NORTH_KOREA : { tcrDaylight = {Last, Sun, Mar, 1, 510}; //Pyongyang Time = UTC + 8.5 hours tcrStandard = tcrDaylight; break; } case TZ_INDIA : { tcrDaylight = {Last, Sun, Mar, 1, 330}; //India Standard Time = UTC + 5.5 hours tcrStandard = tcrDaylight; break; } case TZ_SASKACHEWAN : { tcrDaylight = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours tcrStandard = tcrDaylight; break; } case TZ_AUSTRALIA_NORTHERN : { tcrStandard = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours tcrStandard = tcrDaylight; break; } case TZ_AUSTRALIA_SOUTHERN : { tcrDaylight = {First, Sun, Oct, 2, 630}; //ACDT = UTC + 10.5 hours tcrStandard = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours break; } case TZ_HAWAII : { tcrDaylight = {Last, Sun, Mar, 1, -600}; //HST = UTC - 10 hours tcrStandard = tcrDaylight; break; } } tzCurrent = currentTimezone; tz = new Timezone(tcrDaylight, tcrStandard); } void handleNetworkTime() { if (ntpEnabled && ntpConnected && millis() - ntpLastSyncTime > 50000000L && WLED_CONNECTED) { if (millis() - ntpPacketSentTime > 10000) { sendNTPPacket(); ntpPacketSentTime = millis(); } if (checkNTPResponse()) { ntpLastSyncTime = millis(); } } } void sendNTPPacket() { if (!ntpServerIP.fromString(ntpServerName)) //see if server is IP or domain { #ifdef ESP8266 WiFi.hostByName(ntpServerName, ntpServerIP, 750); #else WiFi.hostByName(ntpServerName, ntpServerIP); #endif } DEBUG_PRINTLN(F("send NTP")); byte pbuf[NTP_PACKET_SIZE]; memset(pbuf, 0, NTP_PACKET_SIZE); pbuf[0] = 0b11100011; // LI, Version, Mode pbuf[1] = 0; // Stratum, or type of clock pbuf[2] = 6; // Polling Interval pbuf[3] = 0xEC; // Peer Clock Precision // 8 bytes of zero for Root Delay & Root Dispersion pbuf[12] = 49; pbuf[13] = 0x4E; pbuf[14] = 49; pbuf[15] = 52; ntpUdp.beginPacket(ntpServerIP, 123); //NTP requests are to port 123 ntpUdp.write(pbuf, NTP_PACKET_SIZE); ntpUdp.endPacket(); } bool checkNTPResponse() { int cb = ntpUdp.parsePacket(); if (cb) { DEBUG_PRINT(F("NTP recv, l=")); DEBUG_PRINTLN(cb); byte pbuf[NTP_PACKET_SIZE]; ntpUdp.read(pbuf, NTP_PACKET_SIZE); // read the packet into the buffer unsigned long highWord = word(pbuf[40], pbuf[41]); unsigned long lowWord = word(pbuf[42], pbuf[43]); if (highWord == 0 && lowWord == 0) return false; unsigned long secsSince1900 = highWord << 16 | lowWord; DEBUG_PRINT(F("Unix time = ")); unsigned long epoch = secsSince1900 - 2208988799UL; //subtract 70 years -1sec (on avg. more precision) setTime(epoch); DEBUG_PRINTLN(epoch); if (countdownTime - now() > 0) countdownOverTriggered = false; return true; } return false; } void updateLocalTime() { if (currentTimezone != tzCurrent) updateTimezone(); unsigned long tmc = now()+ utcOffsetSecs; localTime = tz->toLocal(tmc); } void getTimeString(char* out) { updateLocalTime(); byte hr = hour(localTime); if (useAMPM) { if (hr > 11) hr -= 12; if (hr == 0) hr = 12; } sprintf(out,"%i-%i-%i, %i:%s%i:%s%i",year(localTime), month(localTime), day(localTime), hr,(minute(localTime)<10)?"0":"",minute(localTime), (second(localTime)<10)?"0":"",second(localTime)); if (useAMPM) { strcat(out,(hour(localTime) > 11)? " PM":" AM"); } } void setCountdown() { if (currentTimezone != tzCurrent) updateTimezone(); countdownTime = tz->toUTC(getUnixTime(countdownHour, countdownMin, countdownSec, countdownDay, countdownMonth, countdownYear)); if (countdownTime - now() > 0) countdownOverTriggered = false; } //returns true if countdown just over bool checkCountdown() { unsigned long n = now(); if (countdownMode) localTime = countdownTime - n + utcOffsetSecs; if (n > countdownTime) { if (countdownMode) localTime = n - countdownTime + utcOffsetSecs; if (!countdownOverTriggered) { if (macroCountdown != 0) applyPreset(macroCountdown); countdownOverTriggered = true; return true; } } return false; } byte weekdayMondayFirst() { byte wd = weekday(localTime) -1; if (wd == 0) wd = 7; return wd; } void checkTimers() { if (lastTimerMinute != minute(localTime)) //only check once a new minute begins { daytime = isDayTime(); if (prevDaytime != daytime) { // sunrise or sunset DEBUG_PRINTLN(daytime?F("Sunrise"):F("Sunset")); } lastTimerMinute = minute(localTime); for (uint8_t i = 0; i < 8; i++) { if (timerMacro[i] != 0 && (timerHours[i] == hour(localTime) || timerHours[i] == 24) //if hour is set to 24, activate every hour && timerMinutes[i] == minute(localTime) && (timerWeekday[i] & 0x01) //timer is enabled && timerWeekday[i] >> weekdayMondayFirst() & 0x01) //timer should activate at current day of week { applyPreset(timerMacro[i]); } } } } /* * This program calculates solar positions as a function of location, date, and time. * The equations are from Jean Meeus, Astronomical Algorithms, Willmann-Bell, Inc., Richmond, VA * (C) 2015, David Brooks, Institute for Earth Science Research and Education. * http://www.instesre.org/ArduinoUnoSolarCalculations.pdf */ //#define DEG_TO_RAD 0.01745329 //#define PI 3.141592654 #define TWOPI 6.28318531 long JulianDate(int year, int month, int day) { if (month<=2) { year--; month+=12; } int A=year/100; int B=2-A+A/4; return (long)(365.25*(year + 4716)) + (int)(30.6001*(month + 1)) + day + B - 1524; } bool isDayTime() { float JD_frac,T,L0,M,C,L_true,GrHrAngle,Obl,RA,Decl,HrAngle,elev; long JD_whole,JDx; float Lon = longitude*DEG_TO_RAD; float Lat = latitude*DEG_TO_RAD; // calculate elevation of the sun (>0 daytime, <0 nighttime) JD_whole = JulianDate(year(localTime), month(localTime), day(localTime)); JD_frac = (hour(localTime) + minute(localTime)/60. + second(localTime)/3600.)/24. - .5; JDx = JD_whole - 2451545; T = (JDx + JD_frac)/36525.; L0 = DEG_TO_RAD*fmod(280.46645 + 36000.76983*T, 360); M = DEG_TO_RAD*fmod(357.5291 + 35999.0503*T, 360); C = DEG_TO_RAD*((1.9146-0.004847*T)*sin(M) + (0.019993-0.000101*T)*sin(2*M) + 0.00029*sin(3*M)); Obl = DEG_TO_RAD*(23 + 26/60. + 21.448/3600. - 46.815/3600*T); GrHrAngle = 280.46061837 + (360*JDx)%360 + .98564736629*JDx + 360.98564736629*JD_frac; GrHrAngle = fmod(GrHrAngle, 360.); L_true = fmod(C + L0, TWOPI); RA = atan2(sin(L_true)*cos(Obl), cos(L_true)); Decl = asin(sin(Obl)*sin(L_true)); HrAngle = DEG_TO_RAD*GrHrAngle + Lon - RA; elev = asin(sin(Lat)*sin(Decl) + cos(Lat)*(cos(Decl)*cos(HrAngle))); // Azimuth measured eastward from north. // azimuth = PI+atan2(sin(HrAngle),cos(HrAngle)*sin(Lat)-tan(Decl)*cos(Lat)); return elev > 0.; // if elevation is gt 0 then it is a day }