#include "wled.h" #include #include "led.h" #include "ir.h" #include "notify.h" #include "alexa.h" #include "overlay.h" #include "file.h" #include "button.h" #include "ntp.h" #include "usermod.h" #include "blynk.h" #include "hue.h" #include "mqtt.h" #include "wled_eeprom.h" #include "server.h" // Global Variable definitions char versionString[] = "0.9.1"; //AP and OTA default passwords (for maximum change them!) char apPass[65] = DEFAULT_AP_PASS; char otaPass[33] = DEFAULT_OTA_PASS; //Hardware CONFIG (only changeble HERE, not at runtime) //LED strip pin, button pin and IR pin changeable in NpbWrapper.h! byte auxDefaultState = 0; //0: input 1: high 2: low byte auxTriggeredState = 0; //0: input 1: high 2: low char ntpServerName[33] = "0.wled.pool.ntp.org"; //NTP server to use //WiFi CONFIG (all these can be changed via web UI, no need to set them here) char clientSSID[33] = CLIENT_SSID; char clientPass[65] = CLIENT_PASS; char cmDNS[33] = "x"; //mDNS address (placeholder, will be replaced by wledXXXXXXXXXXXX.local) char apSSID[33] = ""; //AP off by default (unless setup) byte apChannel = 1; //2.4GHz WiFi AP channel (1-13) byte apHide = 0; //hidden AP SSID byte apBehavior = AP_BEHAVIOR_BOOT_NO_CONN; //access point opens when no connection after boot by default IPAddress staticIP(0, 0, 0, 0); //static IP of ESP IPAddress staticGateway(0, 0, 0, 0); //gateway (router) IP IPAddress staticSubnet(255, 255, 255, 0); //most common subnet in home networks bool noWifiSleep = false; //disabling modem sleep modes will increase heat output and power usage, but may help with connection issues //LED CONFIG uint16_t ledCount = 30; //overcurrent prevented by ABL bool useRGBW = false; //SK6812 strips can contain an extra White channel #define ABL_MILLIAMPS_DEFAULT 850; //auto lower brightness to stay close to milliampere limit bool turnOnAtBoot = true; //turn on LEDs at power-up byte bootPreset = 0; //save preset to load after power-up byte col[]{255, 160, 0, 0}; //current RGB(W) primary color. col[] should be updated if you want to change the color. byte colSec[]{0, 0, 0, 0}; //current RGB(W) secondary color byte briS = 128; //default brightness byte nightlightTargetBri = 0; //brightness after nightlight is over byte nightlightDelayMins = 60; bool nightlightFade = true; //if enabled, light will gradually dim towards the target bri. Otherwise, it will instantly set after delay over bool nightlightColorFade = false; //if enabled, light will gradually fade color from primary to secondary color. bool fadeTransition = true; //enable crossfading color transition uint16_t transitionDelay = 750; //default crossfade duration in ms bool skipFirstLed = false; //ignore first LED in strip (useful if you need the LED as signal repeater) byte briMultiplier = 100; //% of brightness to set (to limit power, if you set it to 50 and set bri to 255, actual brightness will be 127) //User Interface CONFIG char serverDescription[33] = "WLED"; //Name of module bool syncToggleReceive = false; //UIs which only have a single button for sync should toggle send+receive if this is true, only send otherwise //Sync CONFIG bool buttonEnabled = true; byte irEnabled = 0; //Infrared receiver uint16_t udpPort = 21324; //WLED notifier default port uint16_t udpRgbPort = 19446; //Hyperion port bool receiveNotificationBrightness = true; //apply brightness from incoming notifications bool receiveNotificationColor = true; //apply color bool receiveNotificationEffects = true; //apply effects setup bool notifyDirect = false; //send notification if change via UI or HTTP API bool notifyButton = false; //send if updated by button or infrared remote bool notifyAlexa = false; //send notification if updated via Alexa bool notifyMacro = false; //send notification for macro bool notifyHue = true; //send notification if Hue light changes bool notifyTwice = false; //notifications use UDP: enable if devices don't sync reliably bool alexaEnabled = true; //enable device discovery by Amazon Echo char alexaInvocationName[33] = "Light"; //speech control name of device. Choose something voice-to-text can understand char blynkApiKey[36] = ""; //Auth token for Blynk server. If empty, no connection will be made uint16_t realtimeTimeoutMs = 2500; //ms timeout of realtime mode before returning to normal mode int arlsOffset = 0; //realtime LED offset bool receiveDirect = true; //receive UDP realtime bool arlsDisableGammaCorrection = true; //activate if gamma correction is handled by the source bool arlsForceMaxBri = false; //enable to force max brightness if source has very dark colors that would be black #define E131_MAX_UNIVERSE_COUNT 9 uint16_t e131Universe = 1; //settings for E1.31 (sACN) protocol (only DMX_MODE_MULTIPLE_* can span over consequtive universes) uint8_t DMXMode = DMX_MODE_MULTIPLE_RGB; //DMX mode (s.a.) uint16_t DMXAddress = 1; //DMX start address of fixture, a.k.a. first Channel [for E1.31 (sACN) protocol] uint8_t DMXOldDimmer = 0; //only update brightness on change uint8_t e131LastSequenceNumber[E131_MAX_UNIVERSE_COUNT]; //to detect packet loss bool e131Multicast = false; //multicast or unicast bool e131SkipOutOfSequence = false; //freeze instead of flickering bool mqttEnabled = false; char mqttDeviceTopic[33] = ""; //main MQTT topic (individual per device, default is wled/mac) char mqttGroupTopic[33] = "wled/all"; //second MQTT topic (for example to group devices) char mqttServer[33] = ""; //both domains and IPs should work (no SSL) char mqttUser[41] = ""; //optional: username for MQTT auth char mqttPass[41] = ""; //optional: password for MQTT auth char mqttClientID[41] = ""; //override the client ID uint16_t mqttPort = 1883; bool huePollingEnabled = false; //poll hue bridge for light state uint16_t huePollIntervalMs = 2500; //low values (< 1sec) may cause lag but offer quicker response char hueApiKey[47] = "api"; //key token will be obtained from bridge byte huePollLightId = 1; //ID of hue lamp to sync to. Find the ID in the hue app ("about" section) IPAddress hueIP = (0, 0, 0, 0); //IP address of the bridge bool hueApplyOnOff = true; bool hueApplyBri = true; bool hueApplyColor = true; //Time CONFIG bool ntpEnabled = false; //get internet time. Only required if you use clock overlays or time-activated macros bool useAMPM = false; //12h/24h clock format byte currentTimezone = 0; //Timezone ID. Refer to timezones array in wled10_ntp.ino int utcOffsetSecs = 0; //Seconds to offset from UTC before timzone calculation byte overlayDefault = 0; //0: no overlay 1: analog clock 2: single-digit clocl 3: cronixie byte overlayMin = 0, overlayMax = ledCount - 1; //boundaries of overlay mode byte analogClock12pixel = 0; //The pixel in your strip where "midnight" would be bool analogClockSecondsTrail = false; //Display seconds as trail of LEDs instead of a single pixel bool analogClock5MinuteMarks = false; //Light pixels at every 5-minute position char cronixieDisplay[7] = "HHMMSS"; //Cronixie Display mask. See wled13_cronixie.ino bool cronixieBacklight = true; //Allow digits to be back-illuminated bool countdownMode = false; //Clock will count down towards date byte countdownYear = 20, countdownMonth = 1; //Countdown target date, year is last two digits byte countdownDay = 1, countdownHour = 0; byte countdownMin = 0, countdownSec = 0; byte macroBoot = 0; //macro loaded after startup byte macroNl = 0; //after nightlight delay over byte macroCountdown = 0; byte macroAlexaOn = 0, macroAlexaOff = 0; byte macroButton = 0, macroLongPress = 0, macroDoublePress = 0; //Security CONFIG bool otaLock = false; //prevents OTA firmware updates without password. ALWAYS enable if system exposed to any public networks bool wifiLock = false; //prevents access to WiFi settings when OTA lock is enabled bool aOtaEnabled = true; //ArduinoOTA allows easy updates directly from the IDE. Careful, it does not auto-disable when OTA lock is on uint16_t userVar0 = 0, userVar1 = 0; #ifdef WLED_ENABLE_DMX //dmx CONFIG byte DMXChannels = 7; // number of channels per fixture byte DMXFixtureMap[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // assigns the different channels to different functions. See wled21_dmx.ino for more information. uint16_t DMXGap = 10; // gap between the fixtures. makes addressing easier because you don't have to memorize odd numbers when climbing up onto a rig. uint16_t DMXStart = 10; // start address of the first fixture #endif //internal global variable declarations //wifi bool apActive = false; bool forceReconnect = false; uint32_t lastReconnectAttempt = 0; bool interfacesInited = false; bool wasConnected = false; //color byte colOld[]{0, 0, 0, 0}; //color before transition byte colT[]{0, 0, 0, 0}; //color that is currently displayed on the LEDs byte colIT[]{0, 0, 0, 0}; //color that was last sent to LEDs byte colSecT[]{0, 0, 0, 0}; byte colSecOld[]{0, 0, 0, 0}; byte colSecIT[]{0, 0, 0, 0}; byte lastRandomIndex = 0; //used to save last random color so the new one is not the same //transitions bool transitionActive = false; uint16_t transitionDelayDefault = transitionDelay; uint16_t transitionDelayTemp = transitionDelay; unsigned long transitionStartTime; float tperLast = 0; //crossfade transition progress, 0.0f - 1.0f bool jsonTransitionOnce = false; //nightlight bool nightlightActive = false; bool nightlightActiveOld = false; uint32_t nightlightDelayMs = 10; uint8_t nightlightDelayMinsDefault = nightlightDelayMins; unsigned long nightlightStartTime; byte briNlT = 0; //current nightlight brightness byte colNlT[]{0, 0, 0, 0}; //current nightlight color //brightness unsigned long lastOnTime = 0; bool offMode = !turnOnAtBoot; byte bri = briS; byte briOld = 0; byte briT = 0; byte briIT = 0; byte briLast = 128; //brightness before turned off. Used for toggle function byte whiteLast = 128; //white channel before turned off. Used for toggle function //button bool buttonPressedBefore = false; bool buttonLongPressed = false; unsigned long buttonPressedTime = 0; unsigned long buttonWaitTime = 0; //notifications bool notifyDirectDefault = notifyDirect; bool receiveNotifications = true; unsigned long notificationSentTime = 0; byte notificationSentCallMode = NOTIFIER_CALL_MODE_INIT; bool notificationTwoRequired = false; //effects byte effectCurrent = 0; byte effectSpeed = 128; byte effectIntensity = 128; byte effectPalette = 0; //network bool udpConnected = false, udpRgbConnected = false; //ui style bool showWelcomePage = false; //hue byte hueError = HUE_ERROR_INACTIVE; //uint16_t hueFailCount = 0; float hueXLast = 0, hueYLast = 0; uint16_t hueHueLast = 0, hueCtLast = 0; byte hueSatLast = 0, hueBriLast = 0; unsigned long hueLastRequestSent = 0; bool hueAuthRequired = false; bool hueReceived = false; bool hueStoreAllowed = false, hueNewKey = false; //overlays byte overlayCurrent = overlayDefault; byte overlaySpeed = 200; unsigned long overlayRefreshMs = 200; unsigned long overlayRefreshedTime; //cronixie byte dP[]{0, 0, 0, 0, 0, 0}; bool cronixieInit = false; //countdown unsigned long countdownTime = 1514764800L; bool countdownOverTriggered = true; //timer byte lastTimerMinute = 0; byte timerHours[] = {0, 0, 0, 0, 0, 0, 0, 0}; byte timerMinutes[] = {0, 0, 0, 0, 0, 0, 0, 0}; byte timerMacro[] = {0, 0, 0, 0, 0, 0, 0, 0}; byte timerWeekday[] = {255, 255, 255, 255, 255, 255, 255, 255}; //weekdays to activate on //bit pattern of arr elem: 0b11111111: sun,sat,fri,thu,wed,tue,mon,validity //blynk bool blynkEnabled = false; //preset cycling bool presetCyclingEnabled = false; byte presetCycleMin = 1, presetCycleMax = 5; uint16_t presetCycleTime = 1250; unsigned long presetCycledTime = 0; byte presetCycCurr = presetCycleMin; bool presetApplyBri = true; bool saveCurrPresetCycConf = false; //realtime byte realtimeMode = REALTIME_MODE_INACTIVE; IPAddress realtimeIP = (0, 0, 0, 0); unsigned long realtimeTimeout = 0; //mqtt long lastMqttReconnectAttempt = 0; long lastInterfaceUpdate = 0; byte interfaceUpdateCallMode = NOTIFIER_CALL_MODE_INIT; char mqttStatusTopic[40] = ""; //this must be global because of async handlers #if AUXPIN >= 0 //auxiliary debug pin byte auxTime = 0; unsigned long auxStartTime = 0; bool auxActive = false, auxActiveBefore = false; #endif //alexa udp String escapedMac; #ifndef WLED_DISABLE_ALEXA Espalexa espalexa; EspalexaDevice *espalexaDevice; #endif //dns server DNSServer dnsServer; //network time bool ntpConnected = false; time_t local = 0; unsigned long ntpLastSyncTime = 999000000L; unsigned long ntpPacketSentTime = 999000000L; IPAddress ntpServerIP; uint16_t ntpLocalPort = 2390; #define NTP_PACKET_SIZE 48 //maximum number of LEDs - MAX_LEDS is coming from the JSON response getting too big, MAX_LEDS_DMA will become a timing issue #define MAX_LEDS 1500 #define MAX_LEDS_DMA 500 //string temp buffer (now stored in stack locally) #define OMAX 2048 char *obuf; uint16_t olen = 0; //presets uint16_t savedPresets = 0; int8_t currentPreset = -1; bool isPreset = false; byte errorFlag = 0; String messageHead, messageSub; byte optionType; bool doReboot = false; //flag to initiate reboot from async handlers bool doPublishMqtt = false; //server library objects AsyncWebServer server(80); AsyncClient *hueClient = NULL; AsyncMqttClient *mqtt = NULL; //function prototypes void colorFromUint32(uint32_t, bool = false); void serveMessage(AsyncWebServerRequest *, uint16_t, String, String, byte); void handleE131Packet(e131_packet_t *, IPAddress); void arlsLock(uint32_t, byte); void handleOverlayDraw(); //udp interface objects WiFiUDP notifierUdp, rgbUdp; WiFiUDP ntpUdp; ESPAsyncE131 e131(handleE131Packet); bool e131NewData = false; //led fx library object WS2812FX strip = WS2812FX(); #define WLED_CONNECTED (WiFi.status() == WL_CONNECTED) #define WLED_WIFI_CONFIGURED (strlen(clientSSID) >= 1 && strcmp(clientSSID, DEFAULT_CLIENT_SSID) != 0) //debug macros #ifdef WLED_DEBUG #define DEBUG_PRINT(x) Serial.print(x) #define DEBUG_PRINTLN(x) Serial.println(x) #define DEBUG_PRINTF(x) Serial.printf(x) unsigned long debugTime = 0; int lastWifiState = 3; unsigned long wifiStateChangedTime = 0; int loops = 0; #else #define DEBUG_PRINT(x) #define DEBUG_PRINTLN(x) #define DEBUG_PRINTF(x) #endif WLED::WLED() { } //turns all LEDs off and restarts ESP void WLED::reset() { briT = 0; long dly = millis(); while (millis() - dly < 250) { yield(); //enough time to send response to client } setAllLeds(); DEBUG_PRINTLN("MODULE RESET"); ESP.restart(); } bool oappendi(int i) { char s[11]; sprintf(s, "%ld", i); return oappend(s); } bool oappend(const char *txt) { uint16_t len = strlen(txt); if (olen + len >= OMAX) return false; //buffer full strcpy(obuf + olen, txt); olen += len; return true; } void WLED::loop() { handleIR(); //2nd call to function needed for ESP32 to return valid results -- should be good for ESP8266, too handleConnection(); handleSerial(); handleNotifications(); handleTransitions(); #ifdef WLED_ENABLE_DMX handleDMX(); #endif userLoop(); yield(); handleIO(); handleIR(); handleNetworkTime(); handleAlexa(); handleOverlays(); yield(); #ifdef WLED_USE_ANALOG_LEDS strip.setRgbwPwm(); #endif if (doReboot) reset(); if (!realtimeMode) //block stuff if WARLS/Adalight is enabled { if (apActive) dnsServer.processNextRequest(); #ifndef WLED_DISABLE_OTA if (WLED_CONNECTED && aOtaEnabled) ArduinoOTA.handle(); #endif handleNightlight(); yield(); handleHue(); handleBlynk(); yield(); if (!offMode) strip.service(); } yield(); #ifdef ESP8266 MDNS.update(); #endif if (millis() - lastMqttReconnectAttempt > 30000) initMqtt(); //DEBUG serial logging #ifdef WLED_DEBUG if (millis() - debugTime > 9999) { DEBUG_PRINTLN("---DEBUG INFO---"); DEBUG_PRINT("Runtime: "); DEBUG_PRINTLN(millis()); DEBUG_PRINT("Unix time: "); DEBUG_PRINTLN(now()); DEBUG_PRINT("Free heap: "); DEBUG_PRINTLN(ESP.getFreeHeap()); DEBUG_PRINT("Wifi state: "); DEBUG_PRINTLN(WiFi.status()); if (WiFi.status() != lastWifiState) { wifiStateChangedTime = millis(); } lastWifiState = WiFi.status(); DEBUG_PRINT("State time: "); DEBUG_PRINTLN(wifiStateChangedTime); DEBUG_PRINT("NTP last sync: "); DEBUG_PRINTLN(ntpLastSyncTime); DEBUG_PRINT("Client IP: "); DEBUG_PRINTLN(WiFi.localIP()); DEBUG_PRINT("Loops/sec: "); DEBUG_PRINTLN(loops / 10); loops = 0; debugTime = millis(); } loops++; #endif // WLED_DEBU } void WLED::wledInit() { EEPROM.begin(EEPSIZE); ledCount = EEPROM.read(229) + ((EEPROM.read(398) << 8) & 0xFF00); if (ledCount > MAX_LEDS || ledCount == 0) ledCount = 30; #ifdef ESP8266 #if LEDPIN == 3 if (ledCount > MAX_LEDS_DMA) ledCount = MAX_LEDS_DMA; //DMA method uses too much ram #endif #endif Serial.begin(115200); Serial.setTimeout(50); DEBUG_PRINTLN(); DEBUG_PRINT("---WLED "); DEBUG_PRINT(versionString); DEBUG_PRINT(" "); DEBUG_PRINT(VERSION); DEBUG_PRINTLN(" INIT---"); #ifdef ARDUINO_ARCH_ESP32 DEBUG_PRINT("esp32 "); DEBUG_PRINTLN(ESP.getSdkVersion()); #else DEBUG_PRINT("esp8266 "); DEBUG_PRINTLN(ESP.getCoreVersion()); #endif int heapPreAlloc = ESP.getFreeHeap(); DEBUG_PRINT("heap "); DEBUG_PRINTLN(ESP.getFreeHeap()); strip.init(EEPROM.read(372), ledCount, EEPROM.read(2204)); //init LEDs quickly strip.setBrightness(0); DEBUG_PRINT("LEDs inited. heap usage ~"); DEBUG_PRINTLN(heapPreAlloc - ESP.getFreeHeap()); #ifndef WLED_DISABLE_FILESYSTEM #ifdef ARDUINO_ARCH_ESP32 SPIFFS.begin(true); #endif SPIFFS.begin(); #endif DEBUG_PRINTLN("Load EEPROM"); loadSettingsFromEEPROM(true); beginStrip(); userSetup(); if (strcmp(clientSSID, DEFAULT_CLIENT_SSID) == 0) showWelcomePage = true; WiFi.persistent(false); if (macroBoot > 0) applyMacro(macroBoot); Serial.println("Ada"); //generate module IDs escapedMac = WiFi.macAddress(); escapedMac.replace(":", ""); escapedMac.toLowerCase(); if (strcmp(cmDNS, "x") == 0) //fill in unique mdns default { strcpy(cmDNS, "wled-"); sprintf(cmDNS + 5, "%*s", 6, escapedMac.c_str() + 6); } if (mqttDeviceTopic[0] == 0) { strcpy(mqttDeviceTopic, "wled/"); sprintf(mqttDeviceTopic + 5, "%*s", 6, escapedMac.c_str() + 6); } if (mqttClientID[0] == 0) { strcpy(mqttClientID, "WLED-"); sprintf(mqttClientID + 5, "%*s", 6, escapedMac.c_str() + 6); } strip.service(); #ifndef WLED_DISABLE_OTA if (aOtaEnabled) { ArduinoOTA.onStart([]() { #ifdef ESP8266 wifi_set_sleep_type(NONE_SLEEP_T); #endif DEBUG_PRINTLN("Start ArduinoOTA"); }); if (strlen(cmDNS) > 0) ArduinoOTA.setHostname(cmDNS); } #endif #ifdef WLED_ENABLE_DMX dmx.init(512); // initialize with bus length #endif //HTTP server page init initServer(); } void WLED::beginStrip() { // Initialize NeoPixel Strip and button strip.setShowCallback(handleOverlayDraw); #ifdef BTNPIN pinMode(BTNPIN, INPUT_PULLUP); #endif if (bootPreset > 0) applyPreset(bootPreset, turnOnAtBoot); colorUpdated(NOTIFIER_CALL_MODE_INIT); //init relay pin #if RLYPIN >= 0 pinMode(RLYPIN, OUTPUT); #if RLYMDE digitalWrite(RLYPIN, bri); #else digitalWrite(RLYPIN, !bri); #endif #endif //disable button if it is "pressed" unintentionally #ifdef BTNPIN if (digitalRead(BTNPIN) == LOW) buttonEnabled = false; #else buttonEnabled = false; #endif } void WLED::initAP(bool resetAP) { if (apBehavior == AP_BEHAVIOR_BUTTON_ONLY && !resetAP) return; if (!apSSID[0] || resetAP) strcpy(apSSID, "WLED-AP"); if (resetAP) strcpy(apPass, DEFAULT_AP_PASS); DEBUG_PRINT("Opening access point "); DEBUG_PRINTLN(apSSID); WiFi.softAPConfig(IPAddress(4, 3, 2, 1), IPAddress(4, 3, 2, 1), IPAddress(255, 255, 255, 0)); WiFi.softAP(apSSID, apPass, apChannel, apHide); if (!apActive) //start captive portal if AP active { DEBUG_PRINTLN("Init AP interfaces"); server.begin(); if (udpPort > 0 && udpPort != ntpLocalPort) { udpConnected = notifierUdp.begin(udpPort); } if (udpRgbPort > 0 && udpRgbPort != ntpLocalPort && udpRgbPort != udpPort) { udpRgbConnected = rgbUdp.begin(udpRgbPort); } dnsServer.setErrorReplyCode(DNSReplyCode::NoError); dnsServer.start(53, "*", WiFi.softAPIP()); } apActive = true; } void WLED::initConnection() { WiFi.disconnect(); //close old connections #ifdef ESP8266 WiFi.setPhyMode(WIFI_PHY_MODE_11N); #endif if (staticIP[0] != 0 && staticGateway[0] != 0) { WiFi.config(staticIP, staticGateway, staticSubnet, IPAddress(8, 8, 8, 8)); } else { WiFi.config(0U, 0U, 0U); } lastReconnectAttempt = millis(); if (!WLED_WIFI_CONFIGURED) { DEBUG_PRINT("No connection configured. "); if (!apActive) initAP(); //instantly go to ap mode return; } else if (!apActive) { if (apBehavior == AP_BEHAVIOR_ALWAYS) { initAP(); } else { DEBUG_PRINTLN("Access point disabled."); WiFi.softAPdisconnect(true); } } showWelcomePage = false; DEBUG_PRINT("Connecting to "); DEBUG_PRINT(clientSSID); DEBUG_PRINTLN("..."); #ifdef ESP8266 WiFi.hostname(serverDescription); #endif WiFi.begin(clientSSID, clientPass); #ifdef ARDUINO_ARCH_ESP32 WiFi.setSleep(!noWifiSleep); WiFi.setHostname(serverDescription); #else wifi_set_sleep_type((noWifiSleep) ? NONE_SLEEP_T : MODEM_SLEEP_T); #endif } void WLED::initInterfaces() { DEBUG_PRINTLN("Init STA interfaces"); if (hueIP[0] == 0) { hueIP[0] = WiFi.localIP()[0]; hueIP[1] = WiFi.localIP()[1]; hueIP[2] = WiFi.localIP()[2]; } //init Alexa hue emulation if (alexaEnabled) alexaInit(); #ifndef WLED_DISABLE_OTA if (aOtaEnabled) ArduinoOTA.begin(); #endif strip.service(); // Set up mDNS responder: if (strlen(cmDNS) > 0) { if (!aOtaEnabled) MDNS.begin(cmDNS); DEBUG_PRINTLN("mDNS started"); MDNS.addService("http", "tcp", 80); MDNS.addService("wled", "tcp", 80); MDNS.addServiceTxt("wled", "tcp", "mac", escapedMac.c_str()); } server.begin(); if (udpPort > 0 && udpPort != ntpLocalPort) { udpConnected = notifierUdp.begin(udpPort); if (udpConnected && udpRgbPort != udpPort) udpRgbConnected = rgbUdp.begin(udpRgbPort); } if (ntpEnabled) ntpConnected = ntpUdp.begin(ntpLocalPort); initBlynk(blynkApiKey); e131.begin((e131Multicast) ? E131_MULTICAST : E131_UNICAST, e131Universe, E131_MAX_UNIVERSE_COUNT); reconnectHue(); initMqtt(); interfacesInited = true; wasConnected = true; } byte stacO = 0; uint32_t lastHeap; unsigned long heapTime = 0; void WLED::handleConnection() { if (millis() < 2000 && (!WLED_WIFI_CONFIGURED || apBehavior == AP_BEHAVIOR_ALWAYS)) return; if (lastReconnectAttempt == 0) initConnection(); //reconnect WiFi to clear stale allocations if heap gets too low if (millis() - heapTime > 5000) { uint32_t heap = ESP.getFreeHeap(); if (heap < 9000 && lastHeap < 9000) { DEBUG_PRINT("Heap too low! "); DEBUG_PRINTLN(heap); forceReconnect = true; } lastHeap = heap; heapTime = millis(); } byte stac = 0; if (apActive) { #ifdef ESP8266 stac = wifi_softap_get_station_num(); #else wifi_sta_list_t stationList; esp_wifi_ap_get_sta_list(&stationList); stac = stationList.num; #endif if (stac != stacO) { stacO = stac; DEBUG_PRINT("Connected AP clients: "); DEBUG_PRINTLN(stac); if (!WLED_CONNECTED && WLED_WIFI_CONFIGURED) { //trying to connect, but not connected if (stac) WiFi.disconnect(); //disable search so that AP can work else initConnection(); //restart search } } } if (forceReconnect) { DEBUG_PRINTLN("Forcing reconnect."); initConnection(); interfacesInited = false; forceReconnect = false; wasConnected = false; return; } if (!WLED_CONNECTED) { if (interfacesInited) { DEBUG_PRINTLN("Disconnected!"); interfacesInited = false; initConnection(); } if (millis() - lastReconnectAttempt > ((stac) ? 300000 : 20000) && WLED_WIFI_CONFIGURED) initConnection(); if (!apActive && millis() - lastReconnectAttempt > 12000 && (!wasConnected || apBehavior == AP_BEHAVIOR_NO_CONN)) initAP(); } else if (!interfacesInited) { //newly connected DEBUG_PRINTLN(""); DEBUG_PRINT("Connected! IP address: "); DEBUG_PRINTLN(WiFi.localIP()); initInterfaces(); userConnected(); //shut down AP if (apBehavior != AP_BEHAVIOR_ALWAYS && apActive) { dnsServer.stop(); WiFi.softAPdisconnect(true); apActive = false; DEBUG_PRINTLN("Access point disabled."); } } } //by https://github.com/tzapu/WiFiManager/blob/master/WiFiManager.cpp int getSignalQuality(int rssi) { int quality = 0; if (rssi <= -100) { quality = 0; } else if (rssi >= -50) { quality = 100; } else { quality = 2 * (rssi + 100); } return quality; }