WLED/wled00/bus_manager.cpp
2023-03-12 13:14:22 +01:00

563 lines
16 KiB
C++

/*
* Class implementation for addressing various light types
*/
#include <Arduino.h>
#include <IPAddress.h>
#include "const.h"
#include "pin_manager.h"
#include "bus_wrapper.h"
#include "bus_manager.h"
//colors.cpp
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
uint16_t approximateKelvinFromRGB(uint32_t rgb);
void colorRGBtoRGBW(byte* rgb);
//udp.cpp
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte *buffer, uint8_t bri=255, bool isRGBW=false);
// enable additional debug output
#if defined(WLED_DEBUG_HOST)
#include "net_debug.h"
#define DEBUGOUT NetDebug
#else
#define DEBUGOUT Serial
#endif
#ifdef WLED_DEBUG
#ifndef ESP8266
#include <rom/rtc.h>
#endif
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
#else
#define DEBUG_PRINT(x)
#define DEBUG_PRINTLN(x)
#define DEBUG_PRINTF(x...)
#endif
//color mangling macros
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
#define R(c) (byte((c) >> 16))
#define G(c) (byte((c) >> 8))
#define B(c) (byte(c))
#define W(c) (byte((c) >> 24))
void ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
if (_count >= WLED_MAX_COLOR_ORDER_MAPPINGS) {
return;
}
if (len == 0) {
return;
}
if (colorOrder > COL_ORDER_MAX) {
return;
}
_mappings[_count].start = start;
_mappings[_count].len = len;
_mappings[_count].colorOrder = colorOrder;
_count++;
}
uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
if (_count == 0) return defaultColorOrder;
// upper nibble containd W swap information
uint8_t swapW = defaultColorOrder >> 4;
for (uint8_t i = 0; i < _count; i++) {
if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
return _mappings[i].colorOrder | (swapW << 4);
}
}
return defaultColorOrder;
}
uint32_t Bus::autoWhiteCalc(uint32_t c) {
uint8_t aWM = _autoWhiteMode;
if (_gAWM < 255) aWM = _gAWM;
if (aWM == RGBW_MODE_MANUAL_ONLY) return c;
uint8_t w = W(c);
//ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
if (w > 0 && aWM == RGBW_MODE_DUAL) return c;
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
if (aWM == RGBW_MODE_MAX) return RGBW32(r, g, b, r > g ? (r > b ? r : b) : (g > b ? g : b)); // brightest RGB channel
w = r < g ? (r < b ? r : b) : (g < b ? g : b);
if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
return RGBW32(r, g, b, w);
}
BusDigital::BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com) : Bus(bc.type, bc.start, bc.autoWhite), _colorOrderMap(com) {
if (!IS_DIGITAL(bc.type) || !bc.count) return;
if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
_pins[0] = bc.pins[0];
if (IS_2PIN(bc.type)) {
if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
cleanup(); return;
}
_pins[1] = bc.pins[1];
}
reversed = bc.reversed;
_needsRefresh = bc.refreshReq || bc.type == TYPE_TM1814;
_skip = bc.skipAmount; //sacrificial pixels
_len = bc.count + _skip;
_iType = PolyBus::getI(bc.type, _pins, nr);
if (_iType == I_NONE) return;
uint16_t lenToCreate = _len;
if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(_len); // only needs a third of "RGB" LEDs for NeoPixelBus
_busPtr = PolyBus::create(_iType, _pins, lenToCreate, nr);
_valid = (_busPtr != nullptr);
_colorOrder = bc.colorOrder;
DEBUG_PRINTF("%successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u)\n", _valid?"S":"Uns", nr, _len, bc.type, _pins[0],_pins[1],_iType);
}
void BusDigital::show() {
PolyBus::show(_busPtr, _iType);
}
bool BusDigital::canShow() {
return PolyBus::canShow(_busPtr, _iType);
}
void BusDigital::setBrightness(uint8_t b) {
//Fix for turning off onboard LED breaking bus
#ifdef LED_BUILTIN
if (_bri == 0 && b > 0) {
if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) PolyBus::begin(_busPtr, _iType, _pins);
}
#endif
Bus::setBrightness(b);
PolyBus::setBrightness(_busPtr, _iType, b);
}
//If LEDs are skipped, it is possible to use the first as a status LED.
//TODO only show if no new show due in the next 50ms
void BusDigital::setStatusPixel(uint32_t c) {
if (_skip && canShow()) {
PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
PolyBus::show(_busPtr, _iType);
}
}
void IRAM_ATTR BusDigital::setPixelColor(uint16_t pix, uint32_t c) {
if (_type == TYPE_SK6812_RGBW || _type == TYPE_TM1814 || _type == TYPE_WS2812_1CH_X3) c = autoWhiteCalc(c);
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
if (reversed) pix = _len - pix -1;
else pix += _skip;
uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
uint16_t pOld = pix;
pix = IC_INDEX_WS2812_1CH_3X(pix);
uint32_t cOld = PolyBus::getPixelColor(_busPtr, _iType, pix, co);
switch (pOld % 3) { // change only the single channel (TODO: this can cause loss because of get/set)
case 0: c = RGBW32(R(cOld), W(c) , B(cOld), 0); break;
case 1: c = RGBW32(W(c) , G(cOld), B(cOld), 0); break;
case 2: c = RGBW32(R(cOld), G(cOld), W(c) , 0); break;
}
}
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co);
}
uint32_t BusDigital::getPixelColor(uint16_t pix) {
if (reversed) pix = _len - pix -1;
else pix += _skip;
uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
uint16_t pOld = pix;
pix = IC_INDEX_WS2812_1CH_3X(pix);
uint32_t c = PolyBus::getPixelColor(_busPtr, _iType, pix, co);
switch (pOld % 3) { // get only the single channel
case 0: c = RGBW32(G(c), G(c), G(c), G(c)); break;
case 1: c = RGBW32(R(c), R(c), R(c), R(c)); break;
case 2: c = RGBW32(B(c), B(c), B(c), B(c)); break;
}
return c;
}
return PolyBus::getPixelColor(_busPtr, _iType, pix, co);
}
uint8_t BusDigital::getPins(uint8_t* pinArray) {
uint8_t numPins = IS_2PIN(_type) ? 2 : 1;
for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i];
return numPins;
}
void BusDigital::setColorOrder(uint8_t colorOrder) {
// upper nibble contains W swap information
if ((colorOrder & 0x0F) > 5) return;
_colorOrder = colorOrder;
}
void BusDigital::reinit() {
PolyBus::begin(_busPtr, _iType, _pins);
}
void BusDigital::cleanup() {
DEBUG_PRINTLN(F("Digital Cleanup."));
PolyBus::cleanup(_busPtr, _iType);
_iType = I_NONE;
_valid = false;
_busPtr = nullptr;
pinManager.deallocatePin(_pins[1], PinOwner::BusDigital);
pinManager.deallocatePin(_pins[0], PinOwner::BusDigital);
}
BusPwm::BusPwm(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
_valid = false;
if (!IS_PWM(bc.type)) return;
uint8_t numPins = NUM_PWM_PINS(bc.type);
#ifdef ESP8266
analogWriteRange(255); //same range as one RGB channel
analogWriteFreq(WLED_PWM_FREQ);
#else
_ledcStart = pinManager.allocateLedc(numPins);
if (_ledcStart == 255) { //no more free LEDC channels
deallocatePins(); return;
}
#endif
for (uint8_t i = 0; i < numPins; i++) {
uint8_t currentPin = bc.pins[i];
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) {
deallocatePins(); return;
}
_pins[i] = currentPin; //store only after allocatePin() succeeds
#ifdef ESP8266
pinMode(_pins[i], OUTPUT);
#else
ledcSetup(_ledcStart + i, WLED_PWM_FREQ, 8);
ledcAttachPin(_pins[i], _ledcStart + i);
#endif
}
reversed = bc.reversed;
_valid = true;
}
void BusPwm::setPixelColor(uint16_t pix, uint32_t c) {
if (pix != 0 || !_valid) return; //only react to first pixel
if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
if (_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
}
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
uint8_t cct = 0; //0 - full warm white, 255 - full cold white
if (_cct > -1) {
if (_cct >= 1900) cct = (_cct - 1900) >> 5;
else if (_cct < 256) cct = _cct;
} else {
cct = (approximateKelvinFromRGB(c) - 1900) >> 5;
}
uint8_t ww, cw;
#ifdef WLED_USE_IC_CCT
ww = w;
cw = cct;
#else
//0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold)
if (cct < _cctBlend) ww = 255;
else ww = ((255-cct) * 255) / (255 - _cctBlend);
if ((255-cct) < _cctBlend) cw = 255;
else cw = (cct * 255) / (255 - _cctBlend);
ww = (w * ww) / 255; //brightness scaling
cw = (w * cw) / 255;
#endif
switch (_type) {
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
_data[0] = w;
break;
case TYPE_ANALOG_2CH: //warm white + cold white
_data[1] = cw;
_data[0] = ww;
break;
case TYPE_ANALOG_5CH: //RGB + warm white + cold white
_data[4] = cw;
w = ww;
case TYPE_ANALOG_4CH: //RGBW
_data[3] = w;
case TYPE_ANALOG_3CH: //standard dumb RGB
_data[0] = r; _data[1] = g; _data[2] = b;
break;
}
}
//does no index check
uint32_t BusPwm::getPixelColor(uint16_t pix) {
if (!_valid) return 0;
return RGBW32(_data[0], _data[1], _data[2], _data[3]);
}
void BusPwm::show() {
if (!_valid) return;
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
uint8_t scaled = (_data[i] * _bri) / 255;
if (reversed) scaled = 255 - scaled;
#ifdef ESP8266
analogWrite(_pins[i], scaled);
#else
ledcWrite(_ledcStart + i, scaled);
#endif
}
}
uint8_t BusPwm::getPins(uint8_t* pinArray) {
if (!_valid) return 0;
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
pinArray[i] = _pins[i];
}
return numPins;
}
void BusPwm::deallocatePins() {
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
pinManager.deallocatePin(_pins[i], PinOwner::BusPwm);
if (!pinManager.isPinOk(_pins[i])) continue;
#ifdef ESP8266
digitalWrite(_pins[i], LOW); //turn off PWM interrupt
#else
if (_ledcStart < 16) ledcDetachPin(_pins[i]);
#endif
}
#ifdef ARDUINO_ARCH_ESP32
pinManager.deallocateLedc(_ledcStart, numPins);
#endif
}
BusOnOff::BusOnOff(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
_valid = false;
if (bc.type != TYPE_ONOFF) return;
uint8_t currentPin = bc.pins[0];
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusOnOff)) {
return;
}
_pin = currentPin; //store only after allocatePin() succeeds
pinMode(_pin, OUTPUT);
reversed = bc.reversed;
_valid = true;
}
void BusOnOff::setPixelColor(uint16_t pix, uint32_t c) {
if (pix != 0 || !_valid) return; //only react to first pixel
c = autoWhiteCalc(c);
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
_data = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
}
uint32_t BusOnOff::getPixelColor(uint16_t pix) {
if (!_valid) return 0;
return RGBW32(_data, _data, _data, _data);
}
void BusOnOff::show() {
if (!_valid) return;
digitalWrite(_pin, reversed ? !(bool)_data : (bool)_data);
}
uint8_t BusOnOff::getPins(uint8_t* pinArray) {
if (!_valid) return 0;
pinArray[0] = _pin;
return 1;
}
BusNetwork::BusNetwork(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
_valid = false;
switch (bc.type) {
case TYPE_NET_ARTNET_RGB:
_rgbw = false;
_UDPtype = 2;
break;
case TYPE_NET_E131_RGB:
_rgbw = false;
_UDPtype = 1;
break;
default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW
_rgbw = bc.type == TYPE_NET_DDP_RGBW;
_UDPtype = 0;
break;
}
_UDPchannels = _rgbw ? 4 : 3;
_data = (byte *)malloc(bc.count * _UDPchannels);
if (_data == nullptr) return;
memset(_data, 0, bc.count * _UDPchannels);
_len = bc.count;
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
_broadcastLock = false;
_valid = true;
}
void BusNetwork::setPixelColor(uint16_t pix, uint32_t c) {
if (!_valid || pix >= _len) return;
if (hasWhite()) c = autoWhiteCalc(c);
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
uint16_t offset = pix * _UDPchannels;
_data[offset] = R(c);
_data[offset+1] = G(c);
_data[offset+2] = B(c);
if (_rgbw) _data[offset+3] = W(c);
}
uint32_t BusNetwork::getPixelColor(uint16_t pix) {
if (!_valid || pix >= _len) return 0;
uint16_t offset = pix * _UDPchannels;
return RGBW32(_data[offset], _data[offset+1], _data[offset+2], _rgbw ? (_data[offset+3] << 24) : 0);
}
void BusNetwork::show() {
if (!_valid || !canShow()) return;
_broadcastLock = true;
realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw);
_broadcastLock = false;
}
uint8_t BusNetwork::getPins(uint8_t* pinArray) {
for (uint8_t i = 0; i < 4; i++) {
pinArray[i] = _client[i];
}
return 4;
}
void BusNetwork::cleanup() {
_type = I_NONE;
_valid = false;
if (_data != nullptr) free(_data);
_data = nullptr;
}
//utility to get the approx. memory usage of a given BusConfig
uint32_t BusManager::memUsage(BusConfig &bc) {
uint8_t type = bc.type;
uint16_t len = bc.count + bc.skipAmount;
if (type > 15 && type < 32) {
#ifdef ESP8266
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
if (type > 29) return len*20; //RGBW
return len*15;
}
if (type > 29) return len*4; //RGBW
return len*3;
#else //ESP32 RMT uses double buffer?
if (type > 29) return len*8; //RGBW
return len*6;
#endif
}
if (type > 31 && type < 48) return 5;
if (type == 44 || type == 45) return len*4; //RGBW
return len*3; //RGB
}
int BusManager::add(BusConfig &bc) {
if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
if (bc.type >= TYPE_NET_DDP_RGB && bc.type < 96) {
busses[numBusses] = new BusNetwork(bc);
} else if (IS_DIGITAL(bc.type)) {
busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
} else if (bc.type == TYPE_ONOFF) {
busses[numBusses] = new BusOnOff(bc);
} else {
busses[numBusses] = new BusPwm(bc);
}
return numBusses++;
}
//do not call this method from system context (network callback)
void BusManager::removeAll() {
DEBUG_PRINTLN(F("Removing all."));
//prevents crashes due to deleting busses while in use.
while (!canAllShow()) yield();
for (uint8_t i = 0; i < numBusses; i++) delete busses[i];
numBusses = 0;
}
void BusManager::show() {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->show();
}
}
void BusManager::setStatusPixel(uint32_t c) {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->setStatusPixel(c);
}
}
void IRAM_ATTR BusManager::setPixelColor(uint16_t pix, uint32_t c, int16_t cct) {
for (uint8_t i = 0; i < numBusses; i++) {
Bus* b = busses[i];
uint16_t bstart = b->getStart();
if (pix < bstart || pix >= bstart + b->getLength()) continue;
busses[i]->setPixelColor(pix - bstart, c);
}
}
void BusManager::setBrightness(uint8_t b) {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->setBrightness(b);
}
}
void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
if (cct > 255) cct = 255;
if (cct >= 0) {
//if white balance correction allowed, save as kelvin value instead of 0-255
if (allowWBCorrection) cct = 1900 + (cct << 5);
} else cct = -1;
Bus::setCCT(cct);
}
uint32_t BusManager::getPixelColor(uint16_t pix) {
for (uint8_t i = 0; i < numBusses; i++) {
Bus* b = busses[i];
uint16_t bstart = b->getStart();
if (pix < bstart || pix >= bstart + b->getLength()) continue;
return b->getPixelColor(pix - bstart);
}
return 0;
}
bool BusManager::canAllShow() {
for (uint8_t i = 0; i < numBusses; i++) {
if (!busses[i]->canShow()) return false;
}
return true;
}
Bus* BusManager::getBus(uint8_t busNr) {
if (busNr >= numBusses) return nullptr;
return busses[busNr];
}
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
uint16_t BusManager::getTotalLength() {
uint16_t len = 0;
for (uint8_t i=0; i<numBusses; i++) len += busses[i]->getLength();
return len;
}
// Bus static member definition
int16_t Bus::_cct = -1;
uint8_t Bus::_cctBlend = 0;
uint8_t Bus::_gAWM = 255;