WLED/wled00/ntp.cpp
2021-09-26 17:12:13 +02:00

473 lines
15 KiB
C++

#include "src/dependencies/timezone/Timezone.h"
#include "wled.h"
#ifndef WLED_USE_REAL_MATH
#include "wled_math.h"
#else
#define sin_t sin
#define cos_t cos
#define tan_t tan
#define asin_t asin
#define acos_t acos
#define atan_t atan
#define fmod_t fmod
#define floor_t floor
#endif
/*
* Acquires time from NTP server
*/
//#define WLED_DEBUG_NTP
#define NTP_SYNC_INTERVAL 42000UL //Get fresh NTP time about twice per day
Timezone* tz;
#define TZ_UTC 0
#define TZ_UK 1
#define TZ_EUROPE_CENTRAL 2
#define TZ_EUROPE_EASTERN 3
#define TZ_US_EASTERN 4
#define TZ_US_CENTRAL 5
#define TZ_US_MOUNTAIN 6
#define TZ_US_ARIZONA 7
#define TZ_US_PACIFIC 8
#define TZ_CHINA 9
#define TZ_JAPAN 10
#define TZ_AUSTRALIA_EASTERN 11
#define TZ_NEW_ZEALAND 12
#define TZ_NORTH_KOREA 13
#define TZ_INDIA 14
#define TZ_SASKACHEWAN 15
#define TZ_AUSTRALIA_NORTHERN 16
#define TZ_AUSTRALIA_SOUTHERN 17
#define TZ_HAWAII 18
#define TZ_NOVOSIBIRSK 19
#define TZ_INIT 255
byte tzCurrent = TZ_INIT; //uninitialized
void updateTimezone() {
delete tz;
TimeChangeRule tcrDaylight = {Last, Sun, Mar, 1, 0}; //UTC
TimeChangeRule tcrStandard = tcrDaylight; //UTC
switch (currentTimezone) {
case TZ_UK : {
tcrDaylight = {Last, Sun, Mar, 1, 60}; //British Summer Time
tcrStandard = {Last, Sun, Oct, 2, 0}; //Standard Time
break;
}
case TZ_EUROPE_CENTRAL : {
tcrDaylight = {Last, Sun, Mar, 2, 120}; //Central European Summer Time
tcrStandard = {Last, Sun, Oct, 3, 60}; //Central European Standard Time
break;
}
case TZ_EUROPE_EASTERN : {
tcrDaylight = {Last, Sun, Mar, 3, 180}; //East European Summer Time
tcrStandard = {Last, Sun, Oct, 4, 120}; //East European Standard Time
break;
}
case TZ_US_EASTERN : {
tcrDaylight = {Second, Sun, Mar, 2, -240}; //EDT = UTC - 4 hours
tcrStandard = {First, Sun, Nov, 2, -300}; //EST = UTC - 5 hours
break;
}
case TZ_US_CENTRAL : {
tcrDaylight = {Second, Sun, Mar, 2, -300}; //CDT = UTC - 5 hours
tcrStandard = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours
break;
}
case TZ_US_MOUNTAIN : {
tcrDaylight = {Second, Sun, Mar, 2, -360}; //MDT = UTC - 6 hours
tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours
break;
}
case TZ_US_ARIZONA : {
tcrDaylight = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours
tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours
break;
}
case TZ_US_PACIFIC : {
tcrDaylight = {Second, Sun, Mar, 2, -420}; //PDT = UTC - 7 hours
tcrStandard = {First, Sun, Nov, 2, -480}; //PST = UTC - 8 hours
break;
}
case TZ_CHINA : {
tcrDaylight = {Last, Sun, Mar, 1, 480}; //CST = UTC + 8 hours
tcrStandard = tcrDaylight;
break;
}
case TZ_JAPAN : {
tcrDaylight = {Last, Sun, Mar, 1, 540}; //JST = UTC + 9 hours
tcrStandard = tcrDaylight;
break;
}
case TZ_AUSTRALIA_EASTERN : {
tcrDaylight = {Second, Sun, Oct, 2, 660}; //AEDT = UTC + 11 hours
tcrStandard = {First, Sun, Apr, 3, 600}; //AEST = UTC + 10 hours
break;
}
case TZ_NEW_ZEALAND : {
tcrDaylight = {Second, Sun, Sep, 2, 780}; //NZDT = UTC + 13 hours
tcrStandard = {First, Sun, Apr, 3, 720}; //NZST = UTC + 12 hours
break;
}
case TZ_NORTH_KOREA : {
tcrDaylight = {Last, Sun, Mar, 1, 510}; //Pyongyang Time = UTC + 8.5 hours
tcrStandard = tcrDaylight;
break;
}
case TZ_INDIA : {
tcrDaylight = {Last, Sun, Mar, 1, 330}; //India Standard Time = UTC + 5.5 hours
tcrStandard = tcrDaylight;
break;
}
case TZ_SASKACHEWAN : {
tcrDaylight = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours
tcrStandard = tcrDaylight;
break;
}
case TZ_AUSTRALIA_NORTHERN : {
tcrDaylight = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours
tcrStandard = tcrDaylight;
break;
}
case TZ_AUSTRALIA_SOUTHERN : {
tcrDaylight = {First, Sun, Oct, 2, 630}; //ACDT = UTC + 10.5 hours
tcrStandard = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours
break;
}
case TZ_HAWAII : {
tcrDaylight = {Last, Sun, Mar, 1, -600}; //HST = UTC - 10 hours
tcrStandard = tcrDaylight;
break;
}
case TZ_NOVOSIBIRSK : {
tcrDaylight = {Last, Sun, Mar, 1, 420}; //CST = UTC + 7 hours
tcrStandard = tcrDaylight;
break;
}
}
tzCurrent = currentTimezone;
tz = new Timezone(tcrDaylight, tcrStandard);
}
void handleTime() {
handleNetworkTime();
toki.millisecond();
toki.setTick();
if (toki.isTick()) //true only in the first loop after a new second started
{
#ifdef WLED_DEBUG_NTP
Serial.print(F("TICK! "));
toki.printTime(toki.getTime());
#endif
updateLocalTime();
checkTimers();
checkCountdown();
handleOverlays();
}
}
void handleNetworkTime()
{
if (ntpEnabled && ntpConnected && millis() - ntpLastSyncTime > (1000*NTP_SYNC_INTERVAL) && WLED_CONNECTED)
{
if (millis() - ntpPacketSentTime > 10000)
{
sendNTPPacket();
ntpPacketSentTime = millis();
}
if (checkNTPResponse())
{
ntpLastSyncTime = millis();
}
}
}
void sendNTPPacket()
{
if (!ntpServerIP.fromString(ntpServerName)) //see if server is IP or domain
{
#ifdef ESP8266
WiFi.hostByName(ntpServerName, ntpServerIP, 750);
#else
WiFi.hostByName(ntpServerName, ntpServerIP);
#endif
}
DEBUG_PRINTLN(F("send NTP"));
byte pbuf[NTP_PACKET_SIZE];
memset(pbuf, 0, NTP_PACKET_SIZE);
pbuf[0] = 0b11100011; // LI, Version, Mode
pbuf[1] = 0; // Stratum, or type of clock
pbuf[2] = 6; // Polling Interval
pbuf[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
pbuf[12] = 49;
pbuf[13] = 0x4E;
pbuf[14] = 49;
pbuf[15] = 52;
ntpUdp.beginPacket(ntpServerIP, 123); //NTP requests are to port 123
ntpUdp.write(pbuf, NTP_PACKET_SIZE);
ntpUdp.endPacket();
}
bool checkNTPResponse()
{
int cb = ntpUdp.parsePacket();
if (!cb) return false;
uint32_t ntpPacketReceivedTime = millis();
DEBUG_PRINT(F("NTP recv, l="));
DEBUG_PRINTLN(cb);
byte pbuf[NTP_PACKET_SIZE];
ntpUdp.read(pbuf, NTP_PACKET_SIZE); // read the packet into the buffer
Toki::Time arrived = toki.fromNTP(pbuf + 32);
Toki::Time departed = toki.fromNTP(pbuf + 40);
if (departed.sec == 0) return false;
//basic half roundtrip estimation
uint32_t serverDelay = toki.msDifference(arrived, departed);
uint32_t offset = (ntpPacketReceivedTime - ntpPacketSentTime - serverDelay) >> 1;
#ifdef WLED_DEBUG_NTP
//the time the packet departed the NTP server
toki.printTime(departed);
#endif
toki.adjust(departed, offset);
toki.setTime(departed, TOKI_TS_NTP);
#ifdef WLED_DEBUG_NTP
Serial.print("Arrived: ");
toki.printTime(arrived);
Serial.print("Time: ");
toki.printTime(departed);
Serial.print("Roundtrip: ");
Serial.println(ntpPacketReceivedTime - ntpPacketSentTime);
Serial.print("Offset: ");
Serial.println(offset);
Serial.print("Serverdelay: ");
Serial.println(serverDelay);
#endif
if (countdownTime - toki.second() > 0) countdownOverTriggered = false;
// if time changed re-calculate sunrise/sunset
updateLocalTime();
calculateSunriseAndSunset();
return true;
}
void updateLocalTime()
{
if (currentTimezone != tzCurrent) updateTimezone();
unsigned long tmc = toki.second()+ utcOffsetSecs;
localTime = tz->toLocal(tmc);
}
void getTimeString(char* out)
{
updateLocalTime();
byte hr = hour(localTime);
if (useAMPM)
{
if (hr > 11) hr -= 12;
if (hr == 0) hr = 12;
}
sprintf_P(out,PSTR("%i-%i-%i, %02d:%02d:%02d"),year(localTime), month(localTime), day(localTime), hr, minute(localTime), second(localTime));
if (useAMPM)
{
strcat(out,(hour(localTime) > 11)? " PM":" AM");
}
}
void setCountdown()
{
if (currentTimezone != tzCurrent) updateTimezone();
countdownTime = tz->toUTC(getUnixTime(countdownHour, countdownMin, countdownSec, countdownDay, countdownMonth, countdownYear));
if (countdownTime - toki.second() > 0) countdownOverTriggered = false;
}
//returns true if countdown just over
bool checkCountdown()
{
unsigned long n = toki.second();
if (countdownMode) localTime = countdownTime - n + utcOffsetSecs;
if (n > countdownTime) {
if (countdownMode) localTime = n - countdownTime + utcOffsetSecs;
if (!countdownOverTriggered)
{
if (macroCountdown != 0) applyPreset(macroCountdown);
countdownOverTriggered = true;
return true;
}
}
return false;
}
byte weekdayMondayFirst()
{
byte wd = weekday(localTime) -1;
if (wd == 0) wd = 7;
return wd;
}
void checkTimers()
{
if (lastTimerMinute != minute(localTime)) //only check once a new minute begins
{
lastTimerMinute = minute(localTime);
// re-calculate sunrise and sunset just after midnight
if (!hour(localTime) && minute(localTime)==1) calculateSunriseAndSunset();
DEBUG_PRINTF("Local time: %02d:%02d\n", hour(localTime), minute(localTime));
for (uint8_t i = 0; i < 8; i++)
{
if (timerMacro[i] != 0
&& (timerHours[i] == hour(localTime) || timerHours[i] == 24) //if hour is set to 24, activate every hour
&& timerMinutes[i] == minute(localTime)
&& (timerWeekday[i] & 0x01) //timer is enabled
&& ((timerWeekday[i] >> weekdayMondayFirst()) & 0x01)) //timer should activate at current day of week
{
applyPreset(timerMacro[i]);
}
}
// sunrise macro
if (sunrise) {
time_t tmp = sunrise + timerMinutes[8]*60; // NOTE: may not be ok
DEBUG_PRINTF("Trigger time: %02d:%02d\n", hour(tmp), minute(tmp));
if (timerMacro[8] != 0
&& hour(tmp) == hour(localTime)
&& minute(tmp) == minute(localTime)
&& (timerWeekday[8] & 0x01) //timer is enabled
&& ((timerWeekday[8] >> weekdayMondayFirst()) & 0x01)) //timer should activate at current day of week
{
applyPreset(timerMacro[8]);
DEBUG_PRINTF("Sunrise macro %d triggered.",timerMacro[8]);
}
}
// sunset macro
if (sunset) {
time_t tmp = sunset + timerMinutes[9]*60; // NOTE: may not be ok
DEBUG_PRINTF("Trigger time: %02d:%02d\n", hour(tmp), minute(tmp));
if (timerMacro[9] != 0
&& hour(tmp) == hour(localTime)
&& minute(tmp) == minute(localTime)
&& (timerWeekday[9] & 0x01) //timer is enabled
&& ((timerWeekday[9] >> weekdayMondayFirst()) & 0x01)) //timer should activate at current day of week
{
applyPreset(timerMacro[9]);
DEBUG_PRINTF("Sunset macro %d triggered.",timerMacro[9]);
}
}
}
}
#define ZENITH -0.83
// get sunrise (or sunset) time (in minutes) for a given day at a given geo location
int getSunriseUTC(int year, int month, int day, float lat, float lon, bool sunset=false) {
//1. first calculate the day of the year
float N1 = 275 * month / 9;
float N2 = (month + 9) / 12;
float N3 = (1 + floor_t((year - 4 * floor_t(year / 4) + 2) / 3));
float N = N1 - (N2 * N3) + day - 30;
//2. convert the longitude to hour value and calculate an approximate time
float lngHour = lon / 15.0f;
float t = N + (((sunset ? 18 : 6) - lngHour) / 24);
//3. calculate the Sun's mean anomaly
float M = (0.9856f * t) - 3.289f;
//4. calculate the Sun's true longitude
float L = fmod_t(M + (1.916f * sin_t(DEG_TO_RAD*M)) + (0.02f * sin_t(2*DEG_TO_RAD*M)) + 282.634f, 360.0f);
//5a. calculate the Sun's right ascension
float RA = fmod_t(RAD_TO_DEG*atan_t(0.91764f * tan_t(DEG_TO_RAD*L)), 360.0f);
//5b. right ascension value needs to be in the same quadrant as L
float Lquadrant = floor_t( L/90) * 90;
float RAquadrant = floor_t(RA/90) * 90;
RA = RA + (Lquadrant - RAquadrant);
//5c. right ascension value needs to be converted into hours
RA /= 15.0f;
//6. calculate the Sun's declination
float sinDec = 0.39782f * sin_t(DEG_TO_RAD*L);
float cosDec = cos_t(asin_t(sinDec));
//7a. calculate the Sun's local hour angle
float cosH = (sin_t(DEG_TO_RAD*ZENITH) - (sinDec * sin_t(DEG_TO_RAD*lat))) / (cosDec * cos_t(DEG_TO_RAD*lat));
if (cosH > 1 && !sunset) return 0; // the sun never rises on this location (on the specified date)
if (cosH < -1 && sunset) return 0; // the sun never sets on this location (on the specified date)
//7b. finish calculating H and convert into hours
float H = sunset ? RAD_TO_DEG*acos_t(cosH) : 360 - RAD_TO_DEG*acos_t(cosH);
H /= 15.0f;
//8. calculate local mean time of rising/setting
float T = H + RA - (0.06571f * t) - 6.622f;
//9. adjust back to UTC
float UT = fmod_t(T - lngHour, 24.0f);
// return in minutes from midnight
return UT*60;
}
// calculate sunrise and sunset (if longitude and latitude are set)
void calculateSunriseAndSunset() {
if ((int)(longitude*10.) || (int)(latitude*10.)) {
struct tm tim_0;
tim_0.tm_year = year(localTime)-1900;
tim_0.tm_mon = month(localTime)-1;
tim_0.tm_mday = day(localTime);
tim_0.tm_sec = 0;
tim_0.tm_isdst = 0;
int minUTC = getSunriseUTC(year(localTime), month(localTime), day(localTime), latitude, longitude);
if (minUTC) {
// there is a sunrise
tim_0.tm_hour = minUTC / 60;
tim_0.tm_min = minUTC % 60;
sunrise = tz->toLocal(mktime(&tim_0) - utcOffsetSecs);
DEBUG_PRINTF("Sunrise: %02d:%02d\n", hour(sunrise), minute(sunrise));
} else {
sunrise = 0;
}
minUTC = getSunriseUTC(year(localTime), month(localTime), day(localTime), latitude, longitude, true);
if (minUTC) {
// there is a sunset
tim_0.tm_hour = minUTC / 60;
tim_0.tm_min = minUTC % 60;
sunset = tz->toLocal(mktime(&tim_0) - utcOffsetSecs);
DEBUG_PRINTF("Sunset: %02d:%02d\n", hour(sunset), minute(sunset));
} else {
sunset = 0;
}
}
}
//time from JSON and HTTP API
void setTimeFromAPI(uint32_t timein) {
if (timein == 0 || timein == UINT32_MAX) return;
uint32_t prev = toki.second();
//only apply if more accurate or there is a significant difference to the "more accurate" time source
uint32_t diff = (timein > prev) ? timein - prev : prev - timein;
if (toki.getTimeSource() > TOKI_TS_JSON && diff < 60U) return;
toki.setTime(timein, TOKI_NO_MS_ACCURACY, TOKI_TS_JSON);
if (diff >= 60U) {
updateLocalTime();
calculateSunriseAndSunset();
}
if (presetsModifiedTime == 0) presetsModifiedTime = timein;
}