WLED/usermods/Temperature/usermod_temperature.h
2021-07-01 13:24:48 +02:00

290 lines
11 KiB
C++

#pragma once
#include "wled.h"
#include "OneWire.h"
//Pin defaults for QuinLed Dig-Uno if not overriden
#ifndef TEMPERATURE_PIN
#ifdef ARDUINO_ARCH_ESP32
#define TEMPERATURE_PIN 18
#else //ESP8266 boards
#define TEMPERATURE_PIN 14
#endif
#endif
// the frequency to check temperature, 1 minute
#ifndef USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL
#define USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL 60000
#endif
class UsermodTemperature : public Usermod {
private:
bool initDone = false;
OneWire *oneWire;
// GPIO pin used for sensor (with a default compile-time fallback)
int8_t temperaturePin = TEMPERATURE_PIN;
// measurement unit (true==°C, false==°F)
bool degC = true;
// using parasite power on the sensor
bool parasite = false;
// how often do we read from sensor?
unsigned long readingInterval = USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL;
// set last reading as "40 sec before boot", so first reading is taken after 20 sec
unsigned long lastMeasurement = UINT32_MAX - USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL;
// last time requestTemperatures was called
// used to determine when we can read the sensors temperature
// we have to wait at least 93.75 ms after requestTemperatures() is called
unsigned long lastTemperaturesRequest;
float temperature = -100; // default to -100, DS18B20 only goes down to -50C
// indicates requestTemperatures has been called but the sensor measurement is not complete
bool waitingForConversion = false;
// flag set at startup if DS18B20 sensor not found, avoids trying to keep getting
// temperature if flashed to a board without a sensor attached
bool enabled = true;
// strings to reduce flash memory usage (used more than twice)
static const char _name[];
static const char _enabled[];
static const char _readInterval[];
static const char _parasite[];
//Dallas sensor quick (& dirty) reading. Credit to - Author: Peter Scargill, August 17th, 2013
float readDallas() {
byte i;
byte data[2];
int16_t result; // raw data from sensor
if (!oneWire->reset()) return -127.0f; // send reset command and fail fast
oneWire->skip(); // skip ROM
oneWire->write(0xBE); // read (temperature) from EEPROM
for (i=0; i < 2; i++) data[i] = oneWire->read(); // first 2 bytes contain temperature
for (i=2; i < 8; i++) oneWire->read(); // read unused bytes
result = (data[1]<<4) | (data[0]>>4); // we only need whole part, we will add fraction when returning
if (data[1]&0x80) result |= 0xFF00; // fix negative value
oneWire->reset();
oneWire->skip(); // skip ROM
oneWire->write(0x44,parasite); // request new temperature reading (without parasite power)
return (float)result + ((data[0]&0x0008) ? 0.5f : 0.0f);
}
void requestTemperatures() {
readDallas();
lastTemperaturesRequest = millis();
waitingForConversion = true;
DEBUG_PRINTLN(F("Requested temperature."));
}
void readTemperature() {
temperature = readDallas();
lastMeasurement = millis();
waitingForConversion = false;
DEBUG_PRINTF("Read temperature %2.1f.\n", temperature);
}
bool findSensor() {
DEBUG_PRINTLN(F("Searching for sensor..."));
uint8_t deviceAddress[8] = {0,0,0,0,0,0,0,0};
// find out if we have DS18xxx sensor attached
oneWire->reset_search();
while (oneWire->search(deviceAddress)) {
if (oneWire->crc8(deviceAddress, 7) == deviceAddress[7]) {
switch (deviceAddress[0]) {
case 0x10: // DS18S20
case 0x22: // DS18B20
case 0x28: // DS1822
case 0x3B: // DS1825
case 0x42: // DS28EA00
DEBUG_PRINTLN(F("Sensor found."));
return true;
}
}
}
return false;
}
public:
void setup() {
int retries = 10;
// pin retrieved from cfg.json (readFromConfig()) prior to running setup()
if (!pinManager.allocatePin(temperaturePin,false)) {
temperaturePin = -1; // allocation failed
enabled = false;
DEBUG_PRINTLN(F("Temperature pin allocation failed."));
} else {
if (enabled) {
// config says we are enabled
oneWire = new OneWire(temperaturePin);
if (!oneWire->reset())
enabled = false; // resetting 1-Wire bus yielded an error
else
while ((enabled=findSensor()) && retries--) delay(25); // try to find sensor
}
}
initDone = true;
}
void loop() {
if (!enabled || strip.isUpdating()) return;
unsigned long now = millis();
// check to see if we are due for taking a measurement
// lastMeasurement will not be updated until the conversion
// is complete the the reading is finished
if (now - lastMeasurement < readingInterval) return;
// we are due for a measurement, if we are not already waiting
// for a conversion to complete, then make a new request for temps
if (!waitingForConversion) {
requestTemperatures();
return;
}
// we were waiting for a conversion to complete, have we waited log enough?
if (now - lastTemperaturesRequest >= 100 /* 93.75ms per the datasheet but can be up to 750ms */) {
readTemperature();
if (WLED_MQTT_CONNECTED) {
char subuf[64];
strcpy(subuf, mqttDeviceTopic);
if (-100 <= temperature) {
// dont publish super low temperature as the graph will get messed up
// the DallasTemperature library returns -127C or -196.6F when problem
// reading the sensor
strcat_P(subuf, PSTR("/temperature"));
mqtt->publish(subuf, 0, false, String(temperature).c_str());
strcat_P(subuf, PSTR("_f"));
mqtt->publish(subuf, 0, false, String((float)temperature * 1.8f + 32).c_str());
} else {
// publish something else to indicate status?
}
}
}
}
/*
* API calls te enable data exchange between WLED modules
*/
inline float getTemperatureC() {
return (float)temperature;
}
inline float getTemperatureF() {
return (float)temperature * 1.8f + 32;
}
/*
* addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API.
* Creating an "u" object allows you to add custom key/value pairs to the Info section of the WLED web UI.
* Below it is shown how this could be used for e.g. a light sensor
*/
void addToJsonInfo(JsonObject& root) {
// dont add temperature to info if we are disabled
if (!enabled) return;
JsonObject user = root["u"];
if (user.isNull()) user = root.createNestedObject("u");
JsonArray temp = user.createNestedArray(FPSTR(_name));
//temp.add(F("Loaded."));
if (temperature <= -100) {
temp.add(0);
temp.add(F(" Sensor Error!"));
return;
}
temp.add(degC ? temperature : (float)temperature * 1.8f + 32);
if (degC) temp.add(F("°C"));
else temp.add(F("°F"));
}
/**
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
//void addToJsonState(JsonObject &root)
//{
//}
/**
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
* Read "<usermodname>_<usermodparam>" from json state and and change settings (i.e. GPIO pin) used.
*/
//void readFromJsonState(JsonObject &root) {
// if (!initDone) return; // prevent crash on boot applyPreset()
//}
/**
* addToConfig() (called from set.cpp) stores persistent properties to cfg.json
*/
void addToConfig(JsonObject &root) {
// we add JSON object: {"Temperature": {"pin": 0, "degC": true}}
JsonObject top = root.createNestedObject(FPSTR(_name)); // usermodname
top[FPSTR(_enabled)] = enabled;
top["pin"] = temperaturePin; // usermodparam
top["degC"] = degC; // usermodparam
top[FPSTR(_readInterval)] = readingInterval / 1000;
top[FPSTR(_parasite)] = parasite;
DEBUG_PRINTLN(F("Temperature config saved."));
}
/**
* readFromConfig() is called before setup() to populate properties from values stored in cfg.json
*
* The function should return true if configuration was successfully loaded or false if there was no configuration.
*/
bool readFromConfig(JsonObject &root) {
// we look for JSON object: {"Temperature": {"pin": 0, "degC": true}}
int8_t newTemperaturePin = temperaturePin;
JsonObject top = root[FPSTR(_name)];
if (top.isNull()) {
DEBUG_PRINT(FPSTR(_name));
DEBUG_PRINTLN(F(": No config found. (Using defaults.)"));
return false;
}
enabled = top[FPSTR(_enabled)] | enabled;
newTemperaturePin = top["pin"] | newTemperaturePin;
// newTemperaturePin = min(33,max(-1,(int)newTemperaturePin)); // bounds check
degC = top["degC"] | degC;
readingInterval = top[FPSTR(_readInterval)] | readingInterval/1000;
readingInterval = min(120,max(10,(int)readingInterval)) * 1000; // convert to ms
parasite = top[FPSTR(_parasite)] | parasite;
DEBUG_PRINT(FPSTR(_name));
if (!initDone) {
// first run: reading from cfg.json
temperaturePin = newTemperaturePin;
DEBUG_PRINTLN(F(" config loaded."));
} else {
// changing paramters from settings page
if (newTemperaturePin != temperaturePin) {
// deallocate pin and release memory
delete oneWire;
pinManager.deallocatePin(temperaturePin);
temperaturePin = newTemperaturePin;
// initialise
setup();
}
DEBUG_PRINTLN(F(" config (re)loaded."));
}
// use "return !top["newestParameter"].isNull();" when updating Usermod with new features
return !top[FPSTR(_parasite)].isNull();
}
uint16_t getId()
{
return USERMOD_ID_TEMPERATURE;
}
};
// strings to reduce flash memory usage (used more than twice)
const char UsermodTemperature::_name[] PROGMEM = "Temperature";
const char UsermodTemperature::_enabled[] PROGMEM = "enabled";
const char UsermodTemperature::_readInterval[] PROGMEM = "read-interval-s";
const char UsermodTemperature::_parasite[] PROGMEM = "parasite-pwr";