WLED/wled00/FX_fcn.cpp
Blaz Kristan 558b22c36a POC: Implemented segment groups (4).
Sacrificed 1 bit on sound simulation and 1D to 2D mapping each.
2023-04-01 23:40:43 +02:00

1697 lines
61 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
WS2812FX_fcn.cpp contains all utility functions
Harm Aldick - 2016
www.aldick.org
LICENSE
The MIT License (MIT)
Copyright (c) 2016 Harm Aldick
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Modified heavily for WLED
*/
#include "wled.h"
#include "FX.h"
#include "palettes.h"
/*
Custom per-LED mapping has moved!
Create a file "ledmap.json" using the edit page.
this is just an example (30 LEDs). It will first set all even, then all uneven LEDs.
{"map":[
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]}
another example. Switches direction every 5 LEDs.
{"map":[
0, 1, 2, 3, 4, 9, 8, 7, 6, 5, 10, 11, 12, 13, 14,
19, 18, 17, 16, 15, 20, 21, 22, 23, 24, 29, 28, 27, 26, 25]}
*/
//factory defaults LED setup
//#define PIXEL_COUNTS 30, 30, 30, 30
//#define DATA_PINS 16, 1, 3, 4
//#define DEFAULT_LED_TYPE TYPE_WS2812_RGB
#ifndef PIXEL_COUNTS
#define PIXEL_COUNTS DEFAULT_LED_COUNT
#endif
#ifndef DATA_PINS
#define DATA_PINS LEDPIN
#endif
#ifndef DEFAULT_LED_TYPE
#define DEFAULT_LED_TYPE TYPE_WS2812_RGB
#endif
#ifndef DEFAULT_LED_COLOR_ORDER
#define DEFAULT_LED_COLOR_ORDER COL_ORDER_GRB //default to GRB
#endif
#if MAX_NUM_SEGMENTS < WLED_MAX_BUSSES
#error "Max segments must be at least max number of busses!"
#endif
///////////////////////////////////////////////////////////////////////////////
// Segment class implementation
///////////////////////////////////////////////////////////////////////////////
uint16_t Segment::_usedSegmentData = 0U; // amount of RAM all segments use for their data[]
CRGB *Segment::_globalLeds = nullptr;
uint16_t Segment::maxWidth = DEFAULT_LED_COUNT;
uint16_t Segment::maxHeight = 1;
// copy constructor
Segment::Segment(const Segment &orig) {
//DEBUG_PRINTLN(F("-- Copy segment constructor --"));
memcpy((void*)this, (void*)&orig, sizeof(Segment));
name = nullptr;
data = nullptr;
_dataLen = 0;
_t = nullptr;
if (leds && !Segment::_globalLeds) leds = nullptr;
if (orig.name) { name = new char[strlen(orig.name)+1]; if (name) strcpy(name, orig.name); }
if (orig.data) { if (allocateData(orig._dataLen)) memcpy(data, orig.data, orig._dataLen); }
if (orig._t) { _t = new Transition(orig._t->_dur, orig._t->_briT, orig._t->_cctT, orig._t->_colorT); }
if (orig.leds && !Segment::_globalLeds) { leds = (CRGB*)malloc(sizeof(CRGB)*length()); if (leds) memcpy(leds, orig.leds, sizeof(CRGB)*length()); }
}
// move constructor
Segment::Segment(Segment &&orig) noexcept {
//DEBUG_PRINTLN(F("-- Move segment constructor --"));
memcpy((void*)this, (void*)&orig, sizeof(Segment));
orig.name = nullptr;
orig.data = nullptr;
orig._dataLen = 0;
orig._t = nullptr;
orig.leds = nullptr;
}
// copy assignment
Segment& Segment::operator= (const Segment &orig) {
//DEBUG_PRINTLN(F("-- Copying segment --"));
if (this != &orig) {
// clean destination
if (name) delete[] name;
if (_t) delete _t;
if (leds && !Segment::_globalLeds) free(leds);
deallocateData();
// copy source
memcpy((void*)this, (void*)&orig, sizeof(Segment));
// erase pointers to allocated data
name = nullptr;
data = nullptr;
_dataLen = 0;
_t = nullptr;
if (!Segment::_globalLeds) leds = nullptr;
// copy source data
if (orig.name) { name = new char[strlen(orig.name)+1]; if (name) strcpy(name, orig.name); }
if (orig.data) { if (allocateData(orig._dataLen)) memcpy(data, orig.data, orig._dataLen); }
if (orig._t) { _t = new Transition(orig._t->_dur, orig._t->_briT, orig._t->_cctT, orig._t->_colorT); }
if (orig.leds && !Segment::_globalLeds) { leds = (CRGB*)malloc(sizeof(CRGB)*length()); if (leds) memcpy(leds, orig.leds, sizeof(CRGB)*length()); }
}
return *this;
}
// move assignment
Segment& Segment::operator= (Segment &&orig) noexcept {
//DEBUG_PRINTLN(F("-- Moving segment --"));
if (this != &orig) {
if (name) delete[] name; // free old name
deallocateData(); // free old runtime data
if (_t) delete _t;
if (leds && !Segment::_globalLeds) free(leds);
memcpy((void*)this, (void*)&orig, sizeof(Segment));
orig.name = nullptr;
orig.data = nullptr;
orig._dataLen = 0;
orig._t = nullptr;
orig.leds = nullptr;
}
return *this;
}
bool Segment::allocateData(size_t len) {
if (data && _dataLen == len) return true; //already allocated
deallocateData();
if (Segment::getUsedSegmentData() + len > MAX_SEGMENT_DATA) return false; //not enough memory
// if possible use SPI RAM on ESP32
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_PSRAM)
if (psramFound())
data = (byte*) ps_malloc(len);
else
#endif
data = (byte*) malloc(len);
if (!data) return false; //allocation failed
Segment::addUsedSegmentData(len);
_dataLen = len;
memset(data, 0, len);
return true;
}
void Segment::deallocateData() {
if (!data) return;
free(data);
data = nullptr;
Segment::addUsedSegmentData(-_dataLen);
_dataLen = 0;
}
/**
* If reset of this segment was requested, clears runtime
* settings of this segment.
* Must not be called while an effect mode function is running
* because it could access the data buffer and this method
* may free that data buffer.
*/
void Segment::resetIfRequired() {
if (reset) {
if (leds && !Segment::_globalLeds) { free(leds); leds = nullptr; }
if (transitional && _t) { transitional = false; delete _t; _t = nullptr; }
deallocateData();
next_time = 0; step = 0; call = 0; aux0 = 0; aux1 = 0;
reset = false; // setOption(SEG_OPTION_RESET, false);
}
}
void Segment::setUpLeds() {
// deallocation happens in resetIfRequired() as it is called when segment changes or in destructor
if (Segment::_globalLeds)
#ifndef WLED_DISABLE_2D
leds = &Segment::_globalLeds[start + startY*Segment::maxWidth];
#else
leds = &Segment::_globalLeds[start];
#endif
else if (!leds) {
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_PSRAM)
if (psramFound())
leds = (CRGB*)ps_malloc(sizeof(CRGB)*length());
else
#endif
leds = (CRGB*)malloc(sizeof(CRGB)*length());
}
}
CRGBPalette16 &Segment::loadPalette(CRGBPalette16 &targetPalette, uint8_t pal) {
static unsigned long _lastPaletteChange = 0; // perhaps it should be per segment
static CRGBPalette16 randomPalette = CRGBPalette16(DEFAULT_COLOR);
static CRGBPalette16 prevRandomPalette = CRGBPalette16(CRGB(BLACK));
byte tcp[72];
if (pal < 245 && pal > GRADIENT_PALETTE_COUNT+13) pal = 0;
if (pal > 245 && (strip.customPalettes.size() == 0 || 255U-pal > strip.customPalettes.size()-1)) pal = 0;
//default palette. Differs depending on effect
if (pal == 0) switch (mode) {
case FX_MODE_FIRE_2012 : pal = 35; break; // heat palette
case FX_MODE_COLORWAVES : pal = 26; break; // landscape 33
case FX_MODE_FILLNOISE8 : pal = 9; break; // ocean colors
case FX_MODE_NOISE16_1 : pal = 20; break; // Drywet
case FX_MODE_NOISE16_2 : pal = 43; break; // Blue cyan yellow
case FX_MODE_NOISE16_3 : pal = 35; break; // heat palette
case FX_MODE_NOISE16_4 : pal = 26; break; // landscape 33
case FX_MODE_GLITTER : pal = 11; break; // rainbow colors
case FX_MODE_SUNRISE : pal = 35; break; // heat palette
case FX_MODE_RAILWAY : pal = 3; break; // prim + sec
}
switch (pal) {
case 0: //default palette. Exceptions for specific effects above
targetPalette = PartyColors_p; break;
case 1: {//periodically replace palette with a random one. Transition palette change in 500ms
uint32_t timeSinceLastChange = millis() - _lastPaletteChange;
if (timeSinceLastChange > randomPaletteChangeTime * 1000U) {
prevRandomPalette = randomPalette;
randomPalette = CRGBPalette16(
CHSV(random8(), random8(160, 255), random8(128, 255)),
CHSV(random8(), random8(160, 255), random8(128, 255)),
CHSV(random8(), random8(160, 255), random8(128, 255)),
CHSV(random8(), random8(160, 255), random8(128, 255)));
_lastPaletteChange = millis();
timeSinceLastChange = 0;
}
if (timeSinceLastChange <= 250) {
targetPalette = prevRandomPalette;
// there needs to be 255 palette blends (48) for full blend but that is too resource intensive
// so 128 is a compromise (we need to perform full blend of the two palettes as each segment can have random
// palette selected but only 2 static palettes are used)
size_t noOfBlends = ((128U * timeSinceLastChange) / 250U);
for (size_t i=0; i<noOfBlends; i++) nblendPaletteTowardPalette(targetPalette, randomPalette, 48);
} else {
targetPalette = randomPalette;
}
break;}
case 2: {//primary color only
CRGB prim = gamma32(colors[0]);
targetPalette = CRGBPalette16(prim); break;}
case 3: {//primary + secondary
CRGB prim = gamma32(colors[0]);
CRGB sec = gamma32(colors[1]);
targetPalette = CRGBPalette16(prim,prim,sec,sec); break;}
case 4: {//primary + secondary + tertiary
CRGB prim = gamma32(colors[0]);
CRGB sec = gamma32(colors[1]);
CRGB ter = gamma32(colors[2]);
targetPalette = CRGBPalette16(ter,sec,prim); break;}
case 5: {//primary + secondary (+tert if not off), more distinct
CRGB prim = gamma32(colors[0]);
CRGB sec = gamma32(colors[1]);
if (colors[2]) {
CRGB ter = gamma32(colors[2]);
targetPalette = CRGBPalette16(prim,prim,prim,prim,prim,sec,sec,sec,sec,sec,ter,ter,ter,ter,ter,prim);
} else {
targetPalette = CRGBPalette16(prim,prim,prim,prim,prim,prim,prim,prim,sec,sec,sec,sec,sec,sec,sec,sec);
}
break;}
case 6: //Party colors
targetPalette = PartyColors_p; break;
case 7: //Cloud colors
targetPalette = CloudColors_p; break;
case 8: //Lava colors
targetPalette = LavaColors_p; break;
case 9: //Ocean colors
targetPalette = OceanColors_p; break;
case 10: //Forest colors
targetPalette = ForestColors_p; break;
case 11: //Rainbow colors
targetPalette = RainbowColors_p; break;
case 12: //Rainbow stripe colors
targetPalette = RainbowStripeColors_p; break;
default: //progmem palettes
if (pal>245) {
targetPalette = strip.customPalettes[255-pal]; // we checked bounds above
} else {
memcpy_P(tcp, (byte*)pgm_read_dword(&(gGradientPalettes[pal-13])), 72);
targetPalette.loadDynamicGradientPalette(tcp);
}
break;
}
return targetPalette;
}
void Segment::startTransition(uint16_t dur) {
if (transitional || _t) return; // already in transition no need to store anything
// starting a transition has to occur before change so we get current values 1st
uint8_t _briT = currentBri(on ? opacity : 0);
uint8_t _cctT = currentBri(cct, true);
CRGBPalette16 _palT = CRGBPalette16(DEFAULT_COLOR); loadPalette(_palT, palette);
uint8_t _modeP = mode;
uint32_t _colorT[NUM_COLORS];
for (size_t i=0; i<NUM_COLORS; i++) _colorT[i] = currentColor(i, colors[i]);
if (!_t) _t = new Transition(dur); // no previous transition running
if (!_t) return; // failed to allocate data
_t->_briT = _briT;
_t->_cctT = _cctT;
_t->_palT = _palT;
_t->_modeP = _modeP;
for (size_t i=0; i<NUM_COLORS; i++) _t->_colorT[i] = _colorT[i];
transitional = true; // setOption(SEG_OPTION_TRANSITIONAL, true);
}
// transition progression between 0-65535
uint16_t Segment::progress() {
if (!transitional || !_t) return 0xFFFFU;
uint32_t timeNow = millis();
if (timeNow - _t->_start > _t->_dur || _t->_dur == 0) return 0xFFFFU;
return (timeNow - _t->_start) * 0xFFFFU / _t->_dur;
}
uint8_t Segment::currentBri(uint8_t briNew, bool useCct) {
if (transitional && _t) {
uint32_t prog = progress() + 1;
if (useCct) return ((briNew * prog) + _t->_cctT * (0x10000 - prog)) >> 16;
else return ((briNew * prog) + _t->_briT * (0x10000 - prog)) >> 16;
} else {
return briNew;
}
}
uint8_t Segment::currentMode(uint8_t newMode) {
return (progress()>32767U) ? newMode : _t->_modeP; // change effect in the middle of transition
}
uint32_t Segment::currentColor(uint8_t slot, uint32_t colorNew) {
return transitional && _t ? color_blend(_t->_colorT[slot], colorNew, progress(), true) : colorNew;
}
CRGBPalette16 &Segment::currentPalette(CRGBPalette16 &targetPalette, uint8_t pal) {
loadPalette(targetPalette, pal);
if (transitional && _t && progress() < 0xFFFFU) {
// blend palettes
// there are about 255 blend passes of 48 "blends" to completely blend two palettes (in _dur time)
// minimum blend time is 100ms maximum is 65535ms
uint32_t timeMS = millis() - _t->_start;
uint16_t noOfBlends = (255U * timeMS / _t->_dur) - _t->_prevPaletteBlends;
for (int i=0; i<noOfBlends; i++, _t->_prevPaletteBlends++) nblendPaletteTowardPalette(_t->_palT, targetPalette, 48);
targetPalette = _t->_palT; // copy transitioning/temporary palette
}
return targetPalette;
}
void Segment::handleTransition() {
if (!transitional) return;
unsigned long maxWait = millis() + 20;
if (mode == FX_MODE_STATIC && next_time > maxWait) next_time = maxWait;
if (progress() == 0xFFFFU) {
if (_t) {
if (_t->_modeP != mode) markForReset();
delete _t;
_t = nullptr;
}
transitional = false; // finish transitioning segment
}
}
void Segment::set(uint16_t i1, uint16_t i2, uint8_t grp, uint8_t spc, uint16_t ofs, uint16_t i1Y, uint16_t i2Y) {
//return if neither bounds nor grouping have changed
bool boundsUnchanged = (start == i1 && stop == i2);
#ifndef WLED_DISABLE_2D
if (Segment::maxHeight>1) boundsUnchanged &= (startY == i1Y && stopY == i2Y); // 2D
#endif
if (boundsUnchanged
&& (!grp || (grouping == grp && spacing == spc))
&& (ofs == UINT16_MAX || ofs == offset)) return;
if (stop) fill(BLACK); //turn old segment range off
if (i2 <= i1) { //disable segment
stop = 0;
markForReset();
return;
}
if (i1 < Segment::maxWidth || (i1 >= Segment::maxWidth*Segment::maxHeight && i1 < strip.getLengthTotal())) start = i1; // Segment::maxWidth equals strip.getLengthTotal() for 1D
stop = i2 > Segment::maxWidth*Segment::maxHeight ? MIN(i2,strip.getLengthTotal()) : (i2 > Segment::maxWidth ? Segment::maxWidth : MAX(1,i2));
startY = 0;
stopY = 1;
#ifndef WLED_DISABLE_2D
if (Segment::maxHeight>1) { // 2D
if (i1Y < Segment::maxHeight) startY = i1Y;
stopY = i2Y > Segment::maxHeight ? Segment::maxHeight : MAX(1,i2Y);
}
#endif
if (grp) {
grouping = grp;
spacing = spc;
}
if (ofs < UINT16_MAX) offset = ofs;
markForReset();
if (!boundsUnchanged) refreshLightCapabilities();
}
bool Segment::setColor(uint8_t slot, uint32_t c) { //returns true if changed
if (slot >= NUM_COLORS || c == colors[slot]) return false;
if (!_isRGB && !_hasW) {
if (slot == 0 && c == BLACK) return false; // on/off segment cannot have primary color black
if (slot == 1 && c != BLACK) return false; // on/off segment cannot have secondary color non black
}
if (fadeTransition) startTransition(strip.getTransition()); // start transition prior to change
colors[slot] = c;
stateChanged = true; // send UDP/WS broadcast
return true;
}
void Segment::setCCT(uint16_t k) {
if (k > 255) { //kelvin value, convert to 0-255
if (k < 1900) k = 1900;
if (k > 10091) k = 10091;
k = (k - 1900) >> 5;
}
if (cct == k) return;
if (fadeTransition) startTransition(strip.getTransition()); // start transition prior to change
cct = k;
stateChanged = true; // send UDP/WS broadcast
}
void Segment::setOpacity(uint8_t o) {
if (opacity == o) return;
if (fadeTransition) startTransition(strip.getTransition()); // start transition prior to change
opacity = o;
stateChanged = true; // send UDP/WS broadcast
}
void Segment::setOption(uint8_t n, bool val) {
bool prevOn = on;
if (fadeTransition && n == SEG_OPTION_ON && val != prevOn) startTransition(strip.getTransition()); // start transition prior to change
if (val) options |= 0x01 << n;
else options &= ~(0x01 << n);
if (!(n == SEG_OPTION_SELECTED || n == SEG_OPTION_RESET || n == SEG_OPTION_TRANSITIONAL)) stateChanged = true; // send UDP/WS broadcast
}
void Segment::setMode(uint8_t fx, bool loadDefaults) {
// if we have a valid mode & is not reserved
if (fx < strip.getModeCount() && strncmp_P("RSVD", strip.getModeData(fx), 4)) {
if (fx != mode) {
startTransition(strip.getTransition()); // set effect transitions
//markForReset(); // transition will handle this
mode = fx;
// load default values from effect string
if (loadDefaults) {
int16_t sOpt;
sOpt = extractModeDefaults(fx, "sx"); speed = (sOpt >= 0) ? sOpt : DEFAULT_SPEED;
sOpt = extractModeDefaults(fx, "ix"); intensity = (sOpt >= 0) ? sOpt : DEFAULT_INTENSITY;
sOpt = extractModeDefaults(fx, "c1"); custom1 = (sOpt >= 0) ? sOpt : DEFAULT_C1;
sOpt = extractModeDefaults(fx, "c2"); custom2 = (sOpt >= 0) ? sOpt : DEFAULT_C2;
sOpt = extractModeDefaults(fx, "c3"); custom3 = (sOpt >= 0) ? sOpt : DEFAULT_C3;
sOpt = extractModeDefaults(fx, "o1"); check1 = (sOpt >= 0) ? (bool)sOpt : false;
sOpt = extractModeDefaults(fx, "o2"); check2 = (sOpt >= 0) ? (bool)sOpt : false;
sOpt = extractModeDefaults(fx, "o3"); check3 = (sOpt >= 0) ? (bool)sOpt : false;
sOpt = extractModeDefaults(fx, "m12"); if (sOpt >= 0) map1D2D = constrain(sOpt, 0, 3);
sOpt = extractModeDefaults(fx, "si"); if (sOpt >= 0) soundSim = constrain(sOpt, 0, 3);
sOpt = extractModeDefaults(fx, "rev"); if (sOpt >= 0) reverse = (bool)sOpt;
sOpt = extractModeDefaults(fx, "mi"); if (sOpt >= 0) mirror = (bool)sOpt; // NOTE: setting this option is a risky business
sOpt = extractModeDefaults(fx, "rY"); if (sOpt >= 0) reverse_y = (bool)sOpt;
sOpt = extractModeDefaults(fx, "mY"); if (sOpt >= 0) mirror_y = (bool)sOpt; // NOTE: setting this option is a risky business
sOpt = extractModeDefaults(fx, "pal"); if (sOpt >= 0) setPalette(sOpt); //else setPalette(0);
}
stateChanged = true; // send UDP/WS broadcast
}
}
}
void Segment::setPalette(uint8_t pal) {
if (pal < 245 && pal > GRADIENT_PALETTE_COUNT+13) pal = 0; // built in palettes
if (pal > 245 && (strip.customPalettes.size() == 0 || 255U-pal > strip.customPalettes.size()-1)) pal = 0; // custom palettes
if (pal != palette) {
if (strip.paletteFade) startTransition(strip.getTransition());
palette = pal;
stateChanged = true; // send UDP/WS broadcast
}
}
// 2D matrix
uint16_t Segment::virtualWidth() const {
uint16_t groupLen = groupLength();
uint16_t vWidth = ((transpose ? height() : width()) + groupLen - 1) / groupLen;
if (mirror) vWidth = (vWidth + 1) /2; // divide by 2 if mirror, leave at least a single LED
return vWidth;
}
uint16_t Segment::virtualHeight() const {
uint16_t groupLen = groupLength();
uint16_t vHeight = ((transpose ? width() : height()) + groupLen - 1) / groupLen;
if (mirror_y) vHeight = (vHeight + 1) /2; // divide by 2 if mirror, leave at least a single LED
return vHeight;
}
uint16_t Segment::nrOfVStrips() const {
uint16_t vLen = 1;
#ifndef WLED_DISABLE_2D
if (is2D()) {
switch (map1D2D) {
case M12_pBar:
vLen = virtualWidth();
break;
}
}
#endif
return vLen;
}
// 1D strip
uint16_t Segment::virtualLength() const {
#ifndef WLED_DISABLE_2D
if (is2D()) {
uint16_t vW = virtualWidth();
uint16_t vH = virtualHeight();
uint16_t vLen = vW * vH; // use all pixels from segment
switch (map1D2D) {
case M12_pBar:
vLen = vH;
break;
case M12_pCorner:
case M12_pArc:
vLen = max(vW,vH); // get the longest dimension
break;
}
return vLen;
}
#endif
uint16_t groupLen = groupLength();
uint16_t vLength = (length() + groupLen - 1) / groupLen;
if (mirror) vLength = (vLength + 1) /2; // divide by 2 if mirror, leave at least a single LED
return vLength;
}
void IRAM_ATTR Segment::setPixelColor(int i, uint32_t col)
{
#ifndef WLED_DISABLE_2D
int vStrip = i>>16; // hack to allow running on virtual strips (2D segment columns/rows)
#endif
i &= 0xFFFF;
if (i >= virtualLength() || i<0) return; // if pixel would fall out of segment just exit
#ifndef WLED_DISABLE_2D
if (is2D()) {
uint16_t vH = virtualHeight(); // segment height in logical pixels
uint16_t vW = virtualWidth();
switch (map1D2D) {
case M12_Pixels:
// use all available pixels as a long strip
setPixelColorXY(i % vW, i / vW, col);
break;
case M12_pBar:
// expand 1D effect vertically or have it play on virtual strips
if (vStrip>0) setPixelColorXY(vStrip - 1, vH - i - 1, col);
else for (int x = 0; x < vW; x++) setPixelColorXY(x, vH - i - 1, col);
break;
case M12_pArc:
// expand in circular fashion from center
if (i==0)
setPixelColorXY(0, 0, col);
else {
float step = HALF_PI / (2.85f*i);
for (float rad = 0.0f; rad <= HALF_PI+step/2; rad += step) {
// may want to try float version as well (with or without antialiasing)
int x = roundf(sin_t(rad) * i);
int y = roundf(cos_t(rad) * i);
setPixelColorXY(x, y, col);
}
// Bresenhams Algorithm (may not fill every pixel)
//int d = 3 - (2*i);
//int y = i, x = 0;
//while (y >= x) {
// setPixelColorXY(x, y, col);
// setPixelColorXY(y, x, col);
// x++;
// if (d > 0) {
// y--;
// d += 4 * (x - y) + 10;
// } else {
// d += 4 * x + 6;
// }
//}
}
break;
case M12_pCorner:
for (int x = 0; x <= i; x++) setPixelColorXY(x, i, col);
for (int y = 0; y < i; y++) setPixelColorXY(i, y, col);
break;
}
return;
} else if (Segment::maxHeight!=1 && (width()==1 || height()==1)) {
if (start < Segment::maxWidth*Segment::maxHeight) {
// we have a vertical or horizontal 1D segment (WARNING: virtual...() may be transposed)
int x = 0, y = 0;
if (virtualHeight()>1) y = i;
if (virtualWidth() >1) x = i;
setPixelColorXY(x, y, col);
return;
}
}
#endif
if (leds) leds[i] = col;
uint16_t len = length();
uint8_t _bri_t = currentBri(on ? opacity : 0);
if (!_bri_t && !transitional) return;
if (_bri_t < 255) {
byte r = scale8(R(col), _bri_t);
byte g = scale8(G(col), _bri_t);
byte b = scale8(B(col), _bri_t);
byte w = scale8(W(col), _bri_t);
col = RGBW32(r, g, b, w);
}
// expand pixel (taking into account start, grouping, spacing [and offset])
i = i * groupLength();
if (reverse) { // is segment reversed?
if (mirror) { // is segment mirrored?
i = (len - 1) / 2 - i; //only need to index half the pixels
} else {
i = (len - 1) - i;
}
}
i += start; // starting pixel in a group
// set all the pixels in the group
for (int j = 0; j < grouping; j++) {
uint16_t indexSet = i + ((reverse) ? -j : j);
if (indexSet >= start && indexSet < stop) {
if (mirror) { //set the corresponding mirrored pixel
uint16_t indexMir = stop - indexSet + start - 1;
indexMir += offset; // offset/phase
if (indexMir >= stop) indexMir -= len; // wrap
strip.setPixelColor(indexMir, col);
}
indexSet += offset; // offset/phase
if (indexSet >= stop) indexSet -= len; // wrap
strip.setPixelColor(indexSet, col);
}
}
}
// anti-aliased normalized version of setPixelColor()
void Segment::setPixelColor(float i, uint32_t col, bool aa)
{
int vStrip = int(i/10.0f); // hack to allow running on virtual strips (2D segment columns/rows)
i -= int(i);
if (i<0.0f || i>1.0f) return; // not normalized
float fC = i * (virtualLength()-1);
if (aa) {
uint16_t iL = roundf(fC-0.49f);
uint16_t iR = roundf(fC+0.49f);
float dL = (fC - iL)*(fC - iL);
float dR = (iR - fC)*(iR - fC);
uint32_t cIL = getPixelColor(iL | (vStrip<<16));
uint32_t cIR = getPixelColor(iR | (vStrip<<16));
if (iR!=iL) {
// blend L pixel
cIL = color_blend(col, cIL, uint8_t(dL*255.0f));
setPixelColor(iL | (vStrip<<16), cIL);
// blend R pixel
cIR = color_blend(col, cIR, uint8_t(dR*255.0f));
setPixelColor(iR | (vStrip<<16), cIR);
} else {
// exact match (x & y land on a pixel)
setPixelColor(iL | (vStrip<<16), col);
}
} else {
setPixelColor(uint16_t(roundf(fC)) | (vStrip<<16), col);
}
}
uint32_t Segment::getPixelColor(int i)
{
#ifndef WLED_DISABLE_2D
int vStrip = i>>16;
#endif
i &= 0xFFFF;
#ifndef WLED_DISABLE_2D
if (is2D()) {
uint16_t vH = virtualHeight(); // segment height in logical pixels
uint16_t vW = virtualWidth();
switch (map1D2D) {
case M12_Pixels:
return getPixelColorXY(i % vW, i / vW);
break;
case M12_pBar:
if (vStrip>0) return getPixelColorXY(vStrip - 1, vH - i -1);
else return getPixelColorXY(0, vH - i -1);
break;
case M12_pArc:
case M12_pCorner:
// use longest dimension
return vW>vH ? getPixelColorXY(i, 0) : getPixelColorXY(0, i);
break;
}
return 0;
}
#endif
if (leds) return RGBW32(leds[i].r, leds[i].g, leds[i].b, 0);
if (reverse) i = virtualLength() - i - 1;
i *= groupLength();
i += start;
/* offset/phase */
i += offset;
if (i >= stop) i -= length();
return strip.getPixelColor(i);
}
uint8_t Segment::differs(Segment& b) const {
uint8_t d = 0;
if (start != b.start) d |= SEG_DIFFERS_BOUNDS;
if (stop != b.stop) d |= SEG_DIFFERS_BOUNDS;
if (offset != b.offset) d |= SEG_DIFFERS_GSO;
if (grouping != b.grouping) d |= SEG_DIFFERS_GSO;
if (spacing != b.spacing) d |= SEG_DIFFERS_GSO;
if (opacity != b.opacity) d |= SEG_DIFFERS_BRI;
if (mode != b.mode) d |= SEG_DIFFERS_FX;
if (speed != b.speed) d |= SEG_DIFFERS_FX;
if (intensity != b.intensity) d |= SEG_DIFFERS_FX;
if (palette != b.palette) d |= SEG_DIFFERS_FX;
if (custom1 != b.custom1) d |= SEG_DIFFERS_FX;
if (custom2 != b.custom2) d |= SEG_DIFFERS_FX;
if (custom3 != b.custom3) d |= SEG_DIFFERS_FX;
if (startY != b.startY) d |= SEG_DIFFERS_BOUNDS;
if (stopY != b.stopY) d |= SEG_DIFFERS_BOUNDS;
//bit pattern: (msb first) sound:3, mapping:3, transposed, mirrorY, reverseY, [transitional, reset,] paused, mirrored, on, reverse, [selected]
if ((options & 0b1111111110011110U) != (b.options & 0b1111111110011110U)) d |= SEG_DIFFERS_OPT;
if ((options & 0x0001U) != (b.options & 0x0001U)) d |= SEG_DIFFERS_SEL;
for (uint8_t i = 0; i < NUM_COLORS; i++) if (colors[i] != b.colors[i]) d |= SEG_DIFFERS_COL;
return d;
}
void Segment::refreshLightCapabilities() {
uint8_t capabilities = 0;
uint16_t segStartIdx = 0xFFFFU;
uint16_t segStopIdx = 0;
if (start < Segment::maxWidth * Segment::maxHeight) {
// we are withing 2D matrix (includes 1D segments)
for (int y = startY; y < stopY; y++) for (int x = start; x < stop; x++) {
uint16_t index = x + Segment::maxWidth * y;
if (index < strip.customMappingSize) index = strip.customMappingTable[index]; // convert logical address to physical
if (index < 0xFFFFU) {
if (segStartIdx > index) segStartIdx = index;
if (segStopIdx < index) segStopIdx = index;
}
if (segStartIdx == segStopIdx) segStopIdx++; // we only have 1 pixel segment
}
} else {
// we are on the strip located after the matrix
segStartIdx = start;
segStopIdx = stop;
}
for (uint8_t b = 0; b < busses.getNumBusses(); b++) {
Bus *bus = busses.getBus(b);
if (bus == nullptr || bus->getLength()==0) break;
if (!bus->isOk()) continue;
if (bus->getStart() >= segStopIdx) continue;
if (bus->getStart() + bus->getLength() <= segStartIdx) continue;
//uint8_t type = bus->getType();
if (bus->hasRGB() || (cctFromRgb && bus->hasCCT())) capabilities |= SEG_CAPABILITY_RGB;
if (!cctFromRgb && bus->hasCCT()) capabilities |= SEG_CAPABILITY_CCT;
if (correctWB && (bus->hasRGB() || bus->hasCCT())) capabilities |= SEG_CAPABILITY_CCT; //white balance correction (CCT slider)
if (bus->hasWhite()) {
uint8_t aWM = Bus::getGlobalAWMode() == AW_GLOBAL_DISABLED ? bus->getAutoWhiteMode() : Bus::getGlobalAWMode();
bool whiteSlider = (aWM == RGBW_MODE_DUAL || aWM == RGBW_MODE_MANUAL_ONLY); // white slider allowed
// if auto white calculation from RGB is active (Accurate/Brighter), force RGB controls even if there are no RGB busses
if (!whiteSlider) capabilities |= SEG_CAPABILITY_RGB;
// if auto white calculation from RGB is disabled/optional (None/Dual), allow white channel adjustments
if ( whiteSlider) capabilities |= SEG_CAPABILITY_W;
}
}
_capabilities = capabilities;
}
/*
* Fills segment with color
*/
void Segment::fill(uint32_t c) {
const uint16_t cols = is2D() ? virtualWidth() : virtualLength();
const uint16_t rows = virtualHeight(); // will be 1 for 1D
for(uint16_t y = 0; y < rows; y++) for (uint16_t x = 0; x < cols; x++) {
if (is2D()) setPixelColorXY(x, y, c);
else setPixelColor(x, c);
}
}
// Blends the specified color with the existing pixel color.
void Segment::blendPixelColor(int n, uint32_t color, uint8_t blend) {
setPixelColor(n, color_blend(getPixelColor(n), color, blend));
}
// Adds the specified color with the existing pixel color perserving color balance.
void Segment::addPixelColor(int n, uint32_t color) {
setPixelColor(n, color_add(getPixelColor(n), color));
}
void Segment::fadePixelColor(uint16_t n, uint8_t fade) {
CRGB pix = CRGB(getPixelColor(n)).nscale8_video(fade);
setPixelColor(n, pix);
}
/*
* fade out function, higher rate = quicker fade
*/
void Segment::fade_out(uint8_t rate) {
const uint16_t cols = is2D() ? virtualWidth() : virtualLength();
const uint16_t rows = virtualHeight(); // will be 1 for 1D
rate = (255-rate) >> 1;
float mappedRate = float(rate) +1.1;
uint32_t color = colors[1]; // SEGCOLOR(1); // target color
int w2 = W(color);
int r2 = R(color);
int g2 = G(color);
int b2 = B(color);
for (uint16_t y = 0; y < rows; y++) for (uint16_t x = 0; x < cols; x++) {
color = is2D() ? getPixelColorXY(x, y) : getPixelColor(x);
int w1 = W(color);
int r1 = R(color);
int g1 = G(color);
int b1 = B(color);
int wdelta = (w2 - w1) / mappedRate;
int rdelta = (r2 - r1) / mappedRate;
int gdelta = (g2 - g1) / mappedRate;
int bdelta = (b2 - b1) / mappedRate;
// if fade isn't complete, make sure delta is at least 1 (fixes rounding issues)
wdelta += (w2 == w1) ? 0 : (w2 > w1) ? 1 : -1;
rdelta += (r2 == r1) ? 0 : (r2 > r1) ? 1 : -1;
gdelta += (g2 == g1) ? 0 : (g2 > g1) ? 1 : -1;
bdelta += (b2 == b1) ? 0 : (b2 > b1) ? 1 : -1;
if (is2D()) setPixelColorXY(x, y, r1 + rdelta, g1 + gdelta, b1 + bdelta, w1 + wdelta);
else setPixelColor(x, r1 + rdelta, g1 + gdelta, b1 + bdelta, w1 + wdelta);
}
}
// fades all pixels to black using nscale8()
void Segment::fadeToBlackBy(uint8_t fadeBy) {
const uint16_t cols = is2D() ? virtualWidth() : virtualLength();
const uint16_t rows = virtualHeight(); // will be 1 for 1D
for (uint16_t y = 0; y < rows; y++) for (uint16_t x = 0; x < cols; x++) {
if (is2D()) setPixelColorXY(x, y, CRGB(getPixelColorXY(x,y)).nscale8(255-fadeBy));
else setPixelColor(x, CRGB(getPixelColor(x)).nscale8(255-fadeBy));
}
}
/*
* blurs segment content, source: FastLED colorutils.cpp
*/
void Segment::blur(uint8_t blur_amount)
{
#ifndef WLED_DISABLE_2D
if (is2D()) {
// compatibility with 2D
const uint16_t cols = virtualWidth();
const uint16_t rows = virtualHeight();
for (uint16_t i = 0; i < rows; i++) blurRow(i, blur_amount); // blur all rows
for (uint16_t k = 0; k < cols; k++) blurCol(k, blur_amount); // blur all columns
return;
}
#endif
uint8_t keep = 255 - blur_amount;
uint8_t seep = blur_amount >> 1;
CRGB carryover = CRGB::Black;
for(uint16_t i = 0; i < virtualLength(); i++)
{
CRGB cur = CRGB(getPixelColor(i));
CRGB part = cur;
part.nscale8(seep);
cur.nscale8(keep);
cur += carryover;
if(i > 0) {
uint32_t c = getPixelColor(i-1);
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
setPixelColor(i-1, qadd8(r, part.red), qadd8(g, part.green), qadd8(b, part.blue));
}
setPixelColor(i,cur.red, cur.green, cur.blue);
carryover = part;
}
}
/*
* Put a value 0 to 255 in to get a color value.
* The colours are a transition r -> g -> b -> back to r
* Inspired by the Adafruit examples.
*/
uint32_t Segment::color_wheel(uint8_t pos) {
if (palette) return color_from_palette(pos, false, true, 0);
pos = 255 - pos;
if(pos < 85) {
return ((uint32_t)(255 - pos * 3) << 16) | ((uint32_t)(0) << 8) | (pos * 3);
} else if(pos < 170) {
pos -= 85;
return ((uint32_t)(0) << 16) | ((uint32_t)(pos * 3) << 8) | (255 - pos * 3);
} else {
pos -= 170;
return ((uint32_t)(pos * 3) << 16) | ((uint32_t)(255 - pos * 3) << 8) | (0);
}
}
/*
* Returns a new, random wheel index with a minimum distance of 42 from pos.
*/
uint8_t Segment::get_random_wheel_index(uint8_t pos) {
uint8_t r = 0, x = 0, y = 0, d = 0;
while(d < 42) {
r = random8();
x = abs(pos - r);
y = 255 - x;
d = MIN(x, y);
}
return r;
}
/*
* Gets a single color from the currently selected palette.
* @param i Palette Index (if mapping is true, the full palette will be _virtualSegmentLength long, if false, 255). Will wrap around automatically.
* @param mapping if true, LED position in segment is considered for color
* @param wrap FastLED palettes will usually wrap back to the start smoothly. Set false to get a hard edge
* @param mcol If the default palette 0 is selected, return the standard color 0, 1 or 2 instead. If >2, Party palette is used instead
* @param pbri Value to scale the brightness of the returned color by. Default is 255. (no scaling)
* @returns Single color from palette
*/
uint32_t Segment::color_from_palette(uint16_t i, bool mapping, bool wrap, uint8_t mcol, uint8_t pbri)
{
// default palette or no RGB support on segment
if ((palette == 0 && mcol < NUM_COLORS) || !_isRGB) {
uint32_t color = currentColor(mcol, colors[mcol]);
color = gamma32(color);
if (pbri == 255) return color;
return RGBW32(scale8_video(R(color),pbri), scale8_video(G(color),pbri), scale8_video(B(color),pbri), scale8_video(W(color),pbri));
}
uint8_t paletteIndex = i;
if (mapping && virtualLength() > 1) paletteIndex = (i*255)/(virtualLength() -1);
if (!wrap) paletteIndex = scale8(paletteIndex, 240); //cut off blend at palette "end"
CRGB fastled_col;
CRGBPalette16 curPal;
if (transitional && _t) curPal = _t->_palT;
else loadPalette(curPal, palette);
fastled_col = ColorFromPalette(curPal, paletteIndex, pbri, (strip.paletteBlend == 3)? NOBLEND:LINEARBLEND); // NOTE: paletteBlend should be global
return RGBW32(fastled_col.r, fastled_col.g, fastled_col.b, 0);
}
///////////////////////////////////////////////////////////////////////////////
// WS2812FX class implementation
///////////////////////////////////////////////////////////////////////////////
//do not call this method from system context (network callback)
void WS2812FX::finalizeInit(void)
{
//reset segment runtimes
for (segment &seg : _segments) {
seg.markForReset();
seg.resetIfRequired();
}
// for the lack of better place enumerate ledmaps here
// if we do it in json.cpp (serializeInfo()) we are getting flashes on LEDs
// unfortunately this means we do not get updates after uploads
enumerateLedmaps();
_hasWhiteChannel = _isOffRefreshRequired = false;
//if busses failed to load, add default (fresh install, FS issue, ...)
if (busses.getNumBusses() == 0) {
DEBUG_PRINTLN(F("No busses, init default"));
const uint8_t defDataPins[] = {DATA_PINS};
const uint16_t defCounts[] = {PIXEL_COUNTS};
const uint8_t defNumBusses = ((sizeof defDataPins) / (sizeof defDataPins[0]));
const uint8_t defNumCounts = ((sizeof defCounts) / (sizeof defCounts[0]));
uint16_t prevLen = 0;
for (uint8_t i = 0; i < defNumBusses && i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
uint8_t defPin[] = {defDataPins[i]};
uint16_t start = prevLen;
uint16_t count = defCounts[(i < defNumCounts) ? i : defNumCounts -1];
prevLen += count;
BusConfig defCfg = BusConfig(DEFAULT_LED_TYPE, defPin, start, count, DEFAULT_LED_COLOR_ORDER, false, 0, RGBW_MODE_MANUAL_ONLY);
if (busses.add(defCfg) == -1) break;
}
}
_length = 0;
for (uint8_t i=0; i<busses.getNumBusses(); i++) {
Bus *bus = busses.getBus(i);
if (bus == nullptr) continue;
if (bus->getStart() + bus->getLength() > MAX_LEDS) break;
//RGBW mode is enabled if at least one of the strips is RGBW
_hasWhiteChannel |= bus->hasWhite();
//refresh is required to remain off if at least one of the strips requires the refresh.
_isOffRefreshRequired |= bus->isOffRefreshRequired();
uint16_t busEnd = bus->getStart() + bus->getLength();
if (busEnd > _length) _length = busEnd;
#ifdef ESP8266
if ((!IS_DIGITAL(bus->getType()) || IS_2PIN(bus->getType()))) continue;
uint8_t pins[5];
if (!bus->getPins(pins)) continue;
BusDigital* bd = static_cast<BusDigital*>(bus);
if (pins[0] == 3) bd->reinit();
#endif
}
if (isMatrix) setUpMatrix();
else {
Segment::maxWidth = _length;
Segment::maxHeight = 1;
}
//initialize leds array. TBD: realloc if nr of leds change
if (Segment::_globalLeds) {
purgeSegments(true);
free(Segment::_globalLeds);
Segment::_globalLeds = nullptr;
}
if (useLedsArray) {
size_t arrSize = sizeof(CRGB) * getLengthTotal();
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_PSRAM)
if (psramFound())
Segment::_globalLeds = (CRGB*) ps_malloc(arrSize);
else
#endif
Segment::_globalLeds = (CRGB*) malloc(arrSize);
memset(Segment::_globalLeds, 0, arrSize);
}
//segments are created in makeAutoSegments();
DEBUG_PRINTLN(F("Loading custom palettes"));
loadCustomPalettes(); // (re)load all custom palettes
DEBUG_PRINTLN(F("Loading custom ledmaps"));
deserializeMap(); // (re)load default ledmap
}
void WS2812FX::service() {
uint32_t nowUp = millis(); // Be aware, millis() rolls over every 49 days
now = nowUp + timebase;
if (nowUp - _lastShow < MIN_SHOW_DELAY) return;
bool doShow = false;
_isServicing = true;
_segment_index = 0;
for (segment &seg : _segments) {
// reset the segment runtime data if needed
seg.resetIfRequired();
if (!seg.isActive()) continue;
// last condition ensures all solid segments are updated at the same time
if(nowUp > seg.next_time || _triggered || (doShow && seg.mode == FX_MODE_STATIC))
{
if (seg.grouping == 0) seg.grouping = 1; //sanity check
doShow = true;
uint16_t delay = FRAMETIME;
if (!seg.freeze) { //only run effect function if not frozen
_virtualSegmentLength = seg.virtualLength();
_colors_t[0] = seg.currentColor(0, seg.colors[0]);
_colors_t[1] = seg.currentColor(1, seg.colors[1]);
_colors_t[2] = seg.currentColor(2, seg.colors[2]);
seg.currentPalette(_currentPalette, seg.palette);
if (!cctFromRgb || correctWB) busses.setSegmentCCT(seg.currentBri(seg.cct, true), correctWB);
for (uint8_t c = 0; c < NUM_COLORS; c++) _colors_t[c] = gamma32(_colors_t[c]);
// effect blending (execute previous effect)
// actual code may be a bit more involved as effects have runtime data including allocated memory
//if (seg.transitional && seg._modeP) (*_mode[seg._modeP])(progress());
delay = (*_mode[seg.currentMode(seg.mode)])();
if (seg.mode != FX_MODE_HALLOWEEN_EYES) seg.call++;
if (seg.transitional && delay > FRAMETIME) delay = FRAMETIME; // force faster updates during transition
seg.handleTransition();
}
seg.next_time = nowUp + delay;
}
_segment_index++;
}
_virtualSegmentLength = 0;
busses.setSegmentCCT(-1);
if(doShow) {
yield();
show();
}
_triggered = false;
_isServicing = false;
}
void IRAM_ATTR WS2812FX::setPixelColor(int i, uint32_t col)
{
if (i < customMappingSize) i = customMappingTable[i];
if (i >= _length) return;
busses.setPixelColor(i, col);
}
uint32_t WS2812FX::getPixelColor(uint16_t i)
{
if (i < customMappingSize) i = customMappingTable[i];
if (i >= _length) return 0;
return busses.getPixelColor(i);
}
//DISCLAIMER
//The following function attemps to calculate the current LED power usage,
//and will limit the brightness to stay below a set amperage threshold.
//It is NOT a measurement and NOT guaranteed to stay within the ablMilliampsMax margin.
//Stay safe with high amperage and have a reasonable safety margin!
//I am NOT to be held liable for burned down garages!
//fine tune power estimation constants for your setup
#define MA_FOR_ESP 100 //how much mA does the ESP use (Wemos D1 about 80mA, ESP32 about 120mA)
//you can set it to 0 if the ESP is powered by USB and the LEDs by external
void WS2812FX::estimateCurrentAndLimitBri() {
//power limit calculation
//each LED can draw up 195075 "power units" (approx. 53mA)
//one PU is the power it takes to have 1 channel 1 step brighter per brightness step
//so A=2,R=255,G=0,B=0 would use 510 PU per LED (1mA is about 3700 PU)
bool useWackyWS2815PowerModel = false;
byte actualMilliampsPerLed = milliampsPerLed;
if(milliampsPerLed == 255) {
useWackyWS2815PowerModel = true;
actualMilliampsPerLed = 12; // from testing an actual strip
}
if (ablMilliampsMax < 150 || actualMilliampsPerLed == 0) { //0 mA per LED and too low numbers turn off calculation
currentMilliamps = 0;
busses.setBrightness(_brightness);
return;
}
uint16_t pLen = getLengthPhysical();
uint32_t puPerMilliamp = 195075 / actualMilliampsPerLed;
uint32_t powerBudget = (ablMilliampsMax - MA_FOR_ESP) * puPerMilliamp; //100mA for ESP power
if (powerBudget > puPerMilliamp * pLen) { //each LED uses about 1mA in standby, exclude that from power budget
powerBudget -= puPerMilliamp * pLen;
} else {
powerBudget = 0;
}
uint32_t powerSum = 0;
for (uint8_t b = 0; b < busses.getNumBusses(); b++) {
Bus *bus = busses.getBus(b);
if (bus->getType() >= TYPE_NET_DDP_RGB) continue; //exclude non-physical network busses
uint16_t len = bus->getLength();
uint32_t busPowerSum = 0;
for (uint16_t i = 0; i < len; i++) { //sum up the usage of each LED
uint32_t c = bus->getPixelColor(i);
byte r = R(c), g = G(c), b = B(c), w = W(c);
if(useWackyWS2815PowerModel) { //ignore white component on WS2815 power calculation
busPowerSum += (MAX(MAX(r,g),b)) * 3;
} else {
busPowerSum += (r + g + b + w);
}
}
if (bus->hasWhite()) { //RGBW led total output with white LEDs enabled is still 50mA, so each channel uses less
busPowerSum *= 3;
busPowerSum = busPowerSum >> 2; //same as /= 4
}
powerSum += busPowerSum;
}
uint32_t powerSum0 = powerSum;
powerSum *= _brightness;
if (powerSum > powerBudget) //scale brightness down to stay in current limit
{
float scale = (float)powerBudget / (float)powerSum;
uint16_t scaleI = scale * 255;
uint8_t scaleB = (scaleI > 255) ? 255 : scaleI;
uint8_t newBri = scale8(_brightness, scaleB);
busses.setBrightness(newBri); //to keep brightness uniform, sets virtual busses too
currentMilliamps = (powerSum0 * newBri) / puPerMilliamp;
} else {
currentMilliamps = powerSum / puPerMilliamp;
busses.setBrightness(_brightness);
}
currentMilliamps += MA_FOR_ESP; //add power of ESP back to estimate
currentMilliamps += pLen; //add standby power back to estimate
}
void WS2812FX::show(void) {
// avoid race condition, caputre _callback value
show_callback callback = _callback;
if (callback) callback();
estimateCurrentAndLimitBri();
// some buses send asynchronously and this method will return before
// all of the data has been sent.
// See https://github.com/Makuna/NeoPixelBus/wiki/ESP32-NeoMethods#neoesp32rmt-methods
busses.show();
unsigned long now = millis();
unsigned long diff = now - _lastShow;
uint16_t fpsCurr = 200;
if (diff > 0) fpsCurr = 1000 / diff;
_cumulativeFps = (3 * _cumulativeFps + fpsCurr) >> 2;
_lastShow = now;
}
/**
* Returns a true value if any of the strips are still being updated.
* On some hardware (ESP32), strip updates are done asynchronously.
*/
bool WS2812FX::isUpdating() {
return !busses.canAllShow();
}
/**
* Returns the refresh rate of the LED strip. Useful for finding out whether a given setup is fast enough.
* Only updates on show() or is set to 0 fps if last show is more than 2 secs ago, so accurary varies
*/
uint16_t WS2812FX::getFps() {
if (millis() - _lastShow > 2000) return 0;
return _cumulativeFps +1;
}
void WS2812FX::setTargetFps(uint8_t fps) {
if (fps > 0 && fps <= 120) _targetFps = fps;
_frametime = 1000 / _targetFps;
}
void WS2812FX::setMode(uint8_t segid, uint8_t m) {
if (segid >= _segments.size()) return;
if (m >= getModeCount()) m = getModeCount() - 1;
if (_segments[segid].mode != m) {
_segments[segid].startTransition(_transitionDur); // set effect transitions
//_segments[segid].markForReset();
_segments[segid].mode = m;
}
}
//applies to all active and selected segments
void WS2812FX::setColor(uint8_t slot, uint32_t c) {
if (slot >= NUM_COLORS) return;
for (segment &seg : _segments) {
if (seg.isActive() && seg.isSelected()) {
seg.setColor(slot, c);
}
}
}
void WS2812FX::setCCT(uint16_t k) {
for (segment &seg : _segments) {
if (seg.isActive() && seg.isSelected()) {
seg.setCCT(k);
}
}
}
void WS2812FX::setBrightness(uint8_t b, bool direct) {
if (gammaCorrectBri) b = gamma8(b);
if (_brightness == b) return;
_brightness = b;
if (_brightness == 0) { //unfreeze all segments on power off
for (segment &seg : _segments) {
seg.freeze = false;
}
}
if (direct) {
// would be dangerous if applied immediately (could exceed ABL), but will not output until the next show()
busses.setBrightness(b);
} else {
unsigned long t = millis();
if (_segments[0].next_time > t + 22 && t - _lastShow > MIN_SHOW_DELAY) show(); //apply brightness change immediately if no refresh soon
}
}
uint8_t WS2812FX::getFirstSelectedSegId(void)
{
size_t i = 0;
for (segment &seg : _segments) {
if (seg.isActive() && seg.isSelected()) return i;
i++;
}
// if none selected, use the main segment
return getMainSegmentId();
}
void WS2812FX::setMainSegmentId(uint8_t n) {
_mainSegment = 0;
if (n < _segments.size()) {
_mainSegment = n;
}
return;
}
uint8_t WS2812FX::getLastActiveSegmentId(void) {
for (size_t i = _segments.size() -1; i > 0; i--) {
if (_segments[i].isActive()) return i;
}
return 0;
}
uint8_t WS2812FX::getActiveSegmentsNum(void) {
uint8_t c = 0;
for (size_t i = 0; i < _segments.size(); i++) {
if (_segments[i].isActive()) c++;
}
return c;
}
uint16_t WS2812FX::getLengthTotal(void) {
uint16_t len = Segment::maxWidth * Segment::maxHeight; // will be _length for 1D (see finalizeInit()) but should cover whole matrix for 2D
if (isMatrix && _length > len) len = _length; // for 2D with trailing strip
return len;
}
uint16_t WS2812FX::getLengthPhysical(void) {
uint16_t len = 0;
for (size_t b = 0; b < busses.getNumBusses(); b++) {
Bus *bus = busses.getBus(b);
if (bus->getType() >= TYPE_NET_DDP_RGB) continue; //exclude non-physical network busses
len += bus->getLength();
}
return len;
}
//used for JSON API info.leds.rgbw. Little practical use, deprecate with info.leds.rgbw.
//returns if there is an RGBW bus (supports RGB and White, not only white)
//not influenced by auto-white mode, also true if white slider does not affect output white channel
bool WS2812FX::hasRGBWBus(void) {
for (size_t b = 0; b < busses.getNumBusses(); b++) {
Bus *bus = busses.getBus(b);
if (bus == nullptr || bus->getLength()==0) break;
if (bus->hasRGB() && bus->hasWhite()) return true;
}
return false;
}
bool WS2812FX::hasCCTBus(void) {
if (cctFromRgb && !correctWB) return false;
for (size_t b = 0; b < busses.getNumBusses(); b++) {
Bus *bus = busses.getBus(b);
if (bus == nullptr || bus->getLength()==0) break;
switch (bus->getType()) {
case TYPE_ANALOG_5CH:
case TYPE_ANALOG_2CH:
return true;
}
}
return false;
}
void WS2812FX::purgeSegments(bool force) {
// remove all inactive segments (from the back)
int deleted = 0;
if (_segments.size() <= 1) return;
for (size_t i = _segments.size()-1; i > 0; i--)
if (_segments[i].stop == 0 || force) {
deleted++;
_segments.erase(_segments.begin() + i);
}
if (deleted) {
_segments.shrink_to_fit();
if (_mainSegment >= _segments.size()) setMainSegmentId(0);
}
}
Segment& WS2812FX::getSegment(uint8_t id) {
return _segments[id >= _segments.size() ? getMainSegmentId() : id]; // vectors
}
void WS2812FX::setSegment(uint8_t n, uint16_t i1, uint16_t i2, uint8_t grouping, uint8_t spacing, uint16_t offset, uint16_t startY, uint16_t stopY) {
if (n >= _segments.size()) return;
_segments[n].set(i1, i2, grouping, spacing, offset, startY, stopY);
}
void WS2812FX::restartRuntime() {
for (segment &seg : _segments) seg.markForReset();
}
void WS2812FX::resetSegments() {
_segments.clear(); // destructs all Segment as part of clearing
#ifndef WLED_DISABLE_2D
segment seg = isMatrix ? Segment(0, Segment::maxWidth, 0, Segment::maxHeight) : Segment(0, _length);
#else
segment seg = Segment(0, _length);
#endif
_segments.push_back(seg);
_mainSegment = 0;
}
void WS2812FX::makeAutoSegments(bool forceReset) {
if (autoSegments) { //make one segment per bus
uint16_t segStarts[MAX_NUM_SEGMENTS] = {0};
uint16_t segStops [MAX_NUM_SEGMENTS] = {0};
size_t s = 0;
#ifndef WLED_DISABLE_2D
// 2D segment is the 1st one using entire matrix
if (isMatrix) {
segStarts[0] = 0;
segStops[0] = Segment::maxWidth*Segment::maxHeight;
s++;
}
#endif
for (size_t i = s; i < busses.getNumBusses(); i++) {
Bus* b = busses.getBus(i);
segStarts[s] = b->getStart();
segStops[s] = segStarts[s] + b->getLength();
#ifndef WLED_DISABLE_2D
if (isMatrix && segStops[s] < Segment::maxWidth*Segment::maxHeight) continue; // ignore buses comprising matrix
if (isMatrix && segStarts[s] < Segment::maxWidth*Segment::maxHeight) segStarts[s] = Segment::maxWidth*Segment::maxHeight;
#endif
//check for overlap with previous segments
for (size_t j = 0; j < s; j++) {
if (segStops[j] > segStarts[s] && segStarts[j] < segStops[s]) {
//segments overlap, merge
segStarts[j] = min(segStarts[s],segStarts[j]);
segStops [j] = max(segStops [s],segStops [j]); segStops[s] = 0;
s--;
}
}
s++;
}
_segments.clear();
_segments.reserve(s); // prevent reallocations
// there is always at least one segment (but we need to differentiate between 1D and 2D)
#ifndef WLED_DISABLE_2D
if (isMatrix)
_segments.push_back(Segment(0, Segment::maxWidth, 0, Segment::maxHeight));
else
#endif
_segments.push_back(Segment(segStarts[0], segStops[0]));
for (size_t i = 1; i < s; i++) {
_segments.push_back(Segment(segStarts[i], segStops[i]));
}
} else {
if (forceReset || getSegmentsNum() == 0) resetSegments();
//expand the main seg to the entire length, but only if there are no other segments, or reset is forced
else if (getActiveSegmentsNum() == 1) {
size_t i = getLastActiveSegmentId();
#ifndef WLED_DISABLE_2D
_segments[i].start = 0;
_segments[i].stop = Segment::maxWidth;
_segments[i].startY = 0;
_segments[i].stopY = Segment::maxHeight;
_segments[i].grouping = 1;
_segments[i].spacing = 0;
#else
_segments[i].start = 0;
_segments[i].stop = _length;
#endif
}
}
_mainSegment = 0;
fixInvalidSegments();
}
void WS2812FX::fixInvalidSegments() {
//make sure no segment is longer than total (sanity check)
for (size_t i = getSegmentsNum()-1; i > 0; i--) {
if (isMatrix) {
#ifndef WLED_DISABLE_2D
if (_segments[i].start >= Segment::maxWidth * Segment::maxHeight) {
// 1D segment at the end of matrix
if (_segments[i].start >= _length || _segments[i].startY > 0 || _segments[i].stopY > 1) { _segments.erase(_segments.begin()+i); continue; }
if (_segments[i].stop > _length) _segments[i].stop = _length;
continue;
}
if (_segments[i].start >= Segment::maxWidth || _segments[i].startY >= Segment::maxHeight) { _segments.erase(_segments.begin()+i); continue; }
if (_segments[i].stop > Segment::maxWidth) _segments[i].stop = Segment::maxWidth;
if (_segments[i].stopY > Segment::maxHeight) _segments[i].stopY = Segment::maxHeight;
#endif
} else {
if (_segments[i].start >= _length) { _segments.erase(_segments.begin()+i); continue; }
if (_segments[i].stop > _length) _segments[i].stop = _length;
}
}
// this is always called as the last step after finalizeInit(), update covered bus types
for (segment &seg : _segments)
seg.refreshLightCapabilities();
}
//true if all segments align with a bus, or if a segment covers the total length
//irrelevant in 2D set-up
bool WS2812FX::checkSegmentAlignment() {
bool aligned = false;
for (segment &seg : _segments) {
for (uint8_t b = 0; b<busses.getNumBusses(); b++) {
Bus *bus = busses.getBus(b);
if (seg.start == bus->getStart() && seg.stop == bus->getStart() + bus->getLength()) aligned = true;
}
if (seg.start == 0 && seg.stop == _length) aligned = true;
if (!aligned) return false;
}
return true;
}
//After this function is called, setPixelColor() will use that segment (offsets, grouping, ... will apply)
//Note: If called in an interrupt (e.g. JSON API), original segment must be restored,
//otherwise it can lead to a crash on ESP32 because _segment_index is modified while in use by the main thread
uint8_t WS2812FX::setPixelSegment(uint8_t n) {
uint8_t prevSegId = _segment_index;
if (n < _segments.size()) {
_segment_index = n;
_virtualSegmentLength = _segments[_segment_index].virtualLength();
}
return prevSegId;
}
void WS2812FX::setRange(uint16_t i, uint16_t i2, uint32_t col) {
if (i2 >= i)
{
for (uint16_t x = i; x <= i2; x++) setPixelColor(x, col);
} else
{
for (uint16_t x = i2; x <= i; x++) setPixelColor(x, col);
}
}
void WS2812FX::setTransitionMode(bool t) {
for (segment &seg : _segments) if (!seg.transitional) seg.startTransition(t ? _transitionDur : 0);
}
#ifdef WLED_DEBUG
void WS2812FX::printSize() {
size_t size = 0;
for (const Segment &seg : _segments) size += seg.getSize();
DEBUG_PRINTF("Segments: %d -> %uB\n", _segments.size(), size);
DEBUG_PRINTF("Modes: %d*%d=%uB\n", sizeof(mode_ptr), _mode.size(), (_mode.capacity()*sizeof(mode_ptr)));
DEBUG_PRINTF("Data: %d*%d=%uB\n", sizeof(const char *), _modeData.size(), (_modeData.capacity()*sizeof(const char *)));
DEBUG_PRINTF("Map: %d*%d=%uB\n", sizeof(uint16_t), (int)customMappingSize, customMappingSize*sizeof(uint16_t));
size = getLengthTotal();
if (useLedsArray) DEBUG_PRINTF("Buffer: %d*%u=%uB\n", sizeof(CRGB), size, size*sizeof(CRGB));
}
#endif
void WS2812FX::loadCustomPalettes() {
byte tcp[72]; //support gradient palettes with up to 18 entries
CRGBPalette16 targetPalette;
customPalettes.clear(); // start fresh
for (int index = 0; index<10; index++) {
char fileName[32];
sprintf_P(fileName, PSTR("/palette%d.json"), index);
StaticJsonDocument<1536> pDoc; // barely enough to fit 72 numbers
if (WLED_FS.exists(fileName)) {
DEBUG_PRINT(F("Reading palette from "));
DEBUG_PRINTLN(fileName);
if (readObjectFromFile(fileName, nullptr, &pDoc)) {
JsonArray pal = pDoc[F("palette")];
if (!pal.isNull() && pal.size()>4) { // not an empty palette (at least 2 entries)
if (pal[0].is<int>() && pal[1].is<const char *>()) {
// we have an array of index & hex strings
size_t palSize = MIN(pal.size(), 36);
palSize -= palSize % 2; // make sure size is multiple of 2
for (size_t i=0, j=0; i<palSize && pal[i].as<int>()<256; i+=2, j+=4) {
uint8_t rgbw[] = {0,0,0,0};
tcp[ j ] = (uint8_t) pal[ i ].as<int>(); // index
colorFromHexString(rgbw, pal[i+1].as<const char *>()); // will catch non-string entires
for (size_t c=0; c<3; c++) tcp[j+1+c] = rgbw[c]; // only use RGB component
DEBUG_PRINTF("%d(%d) : %d %d %d\n", i, int(tcp[j]), int(tcp[j+1]), int(tcp[j+2]), int(tcp[j+3]));
}
} else {
size_t palSize = MIN(pal.size(), 72);
palSize -= palSize % 4; // make sure size is multiple of 4
for (size_t i=0; i<palSize && pal[i].as<int>()<256; i+=4) {
tcp[ i ] = (uint8_t) pal[ i ].as<int>(); // index
tcp[i+1] = (uint8_t) pal[i+1].as<int>(); // R
tcp[i+2] = (uint8_t) pal[i+2].as<int>(); // G
tcp[i+3] = (uint8_t) pal[i+3].as<int>(); // B
DEBUG_PRINTF("%d(%d) : %d %d %d\n", i, int(tcp[i]), int(tcp[i+1]), int(tcp[i+2]), int(tcp[i+3]));
}
}
customPalettes.push_back(targetPalette.loadDynamicGradientPalette(tcp));
}
}
} else {
break;
}
}
}
//load custom mapping table from JSON file (called from finalizeInit() or deserializeState())
bool WS2812FX::deserializeMap(uint8_t n) {
// 2D support creates its own ledmap (on the fly) if a ledmap.json exists it will overwrite built one.
char fileName[32];
strcpy_P(fileName, PSTR("/ledmap"));
if (n) sprintf(fileName +7, "%d", n);
strcat(fileName, ".json");
bool isFile = WLED_FS.exists(fileName);
if (!isFile) {
// erase custom mapping if selecting nonexistent ledmap.json (n==0)
if (!isMatrix && !n && customMappingTable != nullptr) {
customMappingSize = 0;
delete[] customMappingTable;
customMappingTable = nullptr;
}
return false;
}
if (!requestJSONBufferLock(7)) return false;
if (!readObjectFromFile(fileName, nullptr, &doc)) {
releaseJSONBufferLock();
return false; //if file does not exist just exit
}
DEBUG_PRINT(F("Reading LED map from "));
DEBUG_PRINTLN(fileName);
// erase old custom ledmap
if (customMappingTable != nullptr) {
customMappingSize = 0;
delete[] customMappingTable;
customMappingTable = nullptr;
}
JsonArray map = doc[F("map")];
if (!map.isNull() && map.size()) { // not an empty map
customMappingSize = map.size();
customMappingTable = new uint16_t[customMappingSize];
for (uint16_t i=0; i<customMappingSize; i++) {
customMappingTable[i] = (uint16_t) (map[i]<0 ? 0xFFFFU : map[i]);
}
}
releaseJSONBufferLock();
return true;
}
WS2812FX* WS2812FX::instance = nullptr;
const char JSON_mode_names[] PROGMEM = R"=====(["FX names moved"])=====";
const char JSON_palette_names[] PROGMEM = R"=====([
"Default","* Random Cycle","* Color 1","* Colors 1&2","* Color Gradient","* Colors Only","Party","Cloud","Lava","Ocean",
"Forest","Rainbow","Rainbow Bands","Sunset","Rivendell","Breeze","Red & Blue","Yellowout","Analogous","Splash",
"Pastel","Sunset 2","Beach","Vintage","Departure","Landscape","Beech","Sherbet","Hult","Hult 64",
"Drywet","Jul","Grintage","Rewhi","Tertiary","Fire","Icefire","Cyane","Light Pink","Autumn",
"Magenta","Magred","Yelmag","Yelblu","Orange & Teal","Tiamat","April Night","Orangery","C9","Sakura",
"Aurora","Atlantica","C9 2","C9 New","Temperature","Aurora 2","Retro Clown","Candy","Toxy Reaf","Fairy Reaf",
"Semi Blue","Pink Candy","Red Reaf","Aqua Flash","Yelblu Hot","Lite Light","Red Flash","Blink Red","Red Shift","Red Tide",
"Candy2"
])=====";