WLED/wled00/wled.cpp
Blaž Kristan 6db2240f8a Merge branch 'master' into dev
(mostly ignored index.js)
2021-09-22 06:58:49 +02:00

825 lines
23 KiB
C++

#define WLED_DEFINE_GLOBAL_VARS //only in one source file, wled.cpp!
#include "wled.h"
#include "wled_ethernet.h"
#include <Arduino.h>
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET)
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
#endif
#ifdef WLED_USE_ETHERNET
// The following six pins are neither configurable nor
// can they be re-assigned through IOMUX / GPIO matrix.
// See https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-ethernet-kit-v1.1.html#ip101gri-phy-interface
const managed_pin_type esp32_nonconfigurable_ethernet_pins[WLED_ETH_RSVD_PINS_COUNT] = {
{ 21, true }, // RMII EMAC TX EN == When high, clocks the data on TXD0 and TXD1 to transmitter
{ 19, true }, // RMII EMAC TXD0 == First bit of transmitted data
{ 22, true }, // RMII EMAC TXD1 == Second bit of transmitted data
{ 25, false }, // RMII EMAC RXD0 == First bit of received data
{ 26, false }, // RMII EMAC RXD1 == Second bit of received data
{ 27, true }, // RMII EMAC CRS_DV == Carrier Sense and RX Data Valid
};
const ethernet_settings ethernetBoards[] = {
// None
{
},
// WT32-EHT01
// Please note, from my testing only these pins work for LED outputs:
// IO2, IO4, IO12, IO14, IO15
// These pins do not appear to work from my testing:
// IO35, IO36, IO39
{
1, // eth_address,
16, // eth_power,
23, // eth_mdc,
18, // eth_mdio,
ETH_PHY_LAN8720, // eth_type,
ETH_CLOCK_GPIO0_IN // eth_clk_mode
},
// ESP32-POE
{
0, // eth_address,
12, // eth_power,
23, // eth_mdc,
18, // eth_mdio,
ETH_PHY_LAN8720, // eth_type,
ETH_CLOCK_GPIO17_OUT // eth_clk_mode
},
// WESP32
{
0, // eth_address,
-1, // eth_power,
16, // eth_mdc,
17, // eth_mdio,
ETH_PHY_LAN8720, // eth_type,
ETH_CLOCK_GPIO0_IN // eth_clk_mode
},
// QuinLed-ESP32-Ethernet
{
0, // eth_address,
5, // eth_power,
23, // eth_mdc,
18, // eth_mdio,
ETH_PHY_LAN8720, // eth_type,
ETH_CLOCK_GPIO17_OUT // eth_clk_mode
},
// TwilightLord-ESP32 Ethernet Shield
{
0, // eth_address,
5, // eth_power,
23, // eth_mdc,
18, // eth_mdio,
ETH_PHY_LAN8720, // eth_type,
ETH_CLOCK_GPIO17_OUT // eth_clk_mode
},
// ESP3DEUXQuattro
{
1, // eth_address,
-1, // eth_power,
23, // eth_mdc,
18, // eth_mdio,
ETH_PHY_LAN8720, // eth_type,
ETH_CLOCK_GPIO17_OUT // eth_clk_mode
}
};
#endif
/*
* Main WLED class implementation. Mostly initialization and connection logic
*/
WLED::WLED()
{
}
// turns all LEDs off and restarts ESP
void WLED::reset()
{
briT = 0;
#ifdef WLED_ENABLE_WEBSOCKETS
ws.closeAll(1012);
#endif
long dly = millis();
while (millis() - dly < 450) {
yield(); // enough time to send response to client
}
setAllLeds();
DEBUG_PRINTLN(F("MODULE RESET"));
ESP.restart();
}
bool oappendi(int i)
{
char s[11];
sprintf(s, "%d", i);
return oappend(s);
}
bool oappend(const char* txt)
{
uint16_t len = strlen(txt);
if (olen + len >= OMAX)
return false; // buffer full
strcpy(obuf + olen, txt);
olen += len;
return true;
}
void prepareHostname(char* hostname)
{
const char *pC = serverDescription;
uint8_t pos = 5;
while (*pC && pos < 24) { // while !null and not over length
if (isalnum(*pC)) { // if the current char is alpha-numeric append it to the hostname
hostname[pos] = *pC;
pos++;
} else if (*pC == ' ' || *pC == '_' || *pC == '-' || *pC == '+' || *pC == '!' || *pC == '?' || *pC == '*') {
hostname[pos] = '-';
pos++;
}
// else do nothing - no leading hyphens and do not include hyphens for all other characters.
pC++;
}
// if the hostname is left blank, use the mac address/default mdns name
if (pos < 6) {
sprintf(hostname + 5, "%*s", 6, escapedMac.c_str() + 6);
} else { //last character must not be hyphen
while (pos > 0 && hostname[pos -1] == '-') {
hostname[pos -1] = 0;
pos--;
}
}
}
//handle Ethernet connection event
void WiFiEvent(WiFiEvent_t event)
{
#ifdef WLED_USE_ETHERNET
char hostname[25] = "wled-";
#endif
switch (event) {
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
case SYSTEM_EVENT_ETH_START:
DEBUG_PRINT(F("ETH Started"));
break;
case SYSTEM_EVENT_ETH_CONNECTED:
DEBUG_PRINT(F("ETH Connected"));
if (!apActive) {
WiFi.disconnect(true);
}
if (staticIP != (uint32_t)0x00000000 && staticGateway != (uint32_t)0x00000000) {
ETH.config(staticIP, staticGateway, staticSubnet, IPAddress(8, 8, 8, 8));
} else {
ETH.config(INADDR_NONE, INADDR_NONE, INADDR_NONE);
}
// convert the "serverDescription" into a valid DNS hostname (alphanumeric)
prepareHostname(hostname);
ETH.setHostname(hostname);
showWelcomePage = false;
break;
case SYSTEM_EVENT_ETH_DISCONNECTED:
DEBUG_PRINT(F("ETH Disconnected"));
// This doesn't really affect ethernet per se,
// as it's only configured once. Rather, it
// may be necessary to reconnect the WiFi when
// ethernet disconnects, as a way to provide
// alternative access to the device.
forceReconnect = true;
break;
#endif
default:
break;
}
}
void WLED::loop()
{
#ifdef WLED_DEBUG
static unsigned long maxUsermodMillis = 0;
#endif
handleTime();
handleIR(); // 2nd call to function needed for ESP32 to return valid results -- should be good for ESP8266, too
handleConnection();
handleSerial();
handleNotifications();
handleTransitions();
#ifdef WLED_ENABLE_DMX
handleDMX();
#endif
userLoop();
#ifdef WLED_DEBUG
unsigned long usermodMillis = millis();
#endif
usermods.loop();
#ifdef WLED_DEBUG
usermodMillis = millis() - usermodMillis;
if (usermodMillis > maxUsermodMillis) maxUsermodMillis = usermodMillis;
#endif
yield();
handleIO();
handleIR();
handleAlexa();
yield();
if (doReboot)
reset();
if (doCloseFile) {
closeFile();
yield();
}
if (!realtimeMode || realtimeOverride) // block stuff if WARLS/Adalight is enabled
{
if (apActive)
dnsServer.processNextRequest();
#ifndef WLED_DISABLE_OTA
if (WLED_CONNECTED && aOtaEnabled)
ArduinoOTA.handle();
#endif
handleNightlight();
handlePlaylist();
yield();
handleHue();
#ifndef WLED_DISABLE_BLYNK
handleBlynk();
#endif
yield();
if (!offMode || strip.isOffRefreshRequred)
strip.service();
#ifdef ESP8266
else if (!noWifiSleep)
delay(1); //required to make sure ESP enters modem sleep (see #1184)
#endif
}
yield();
#ifdef ESP8266
MDNS.update();
#endif
//millis() rolls over every 50 days
if (lastMqttReconnectAttempt > millis()) {
rolloverMillis++;
lastMqttReconnectAttempt = 0;
}
if (millis() - lastMqttReconnectAttempt > 30000) {
lastMqttReconnectAttempt = millis();
initMqtt();
yield();
// refresh WLED nodes list
refreshNodeList();
if (nodeBroadcastEnabled) sendSysInfoUDP();
yield();
}
//LED settings have been saved, re-init busses
//This code block causes severe FPS drop on ESP32 with the original "if (busConfigs[0] != nullptr)" conditional. Investigate!
if (doInitBusses) {
doInitBusses = false;
DEBUG_PRINTLN(F("Re-init busses."));
busses.removeAll();
uint32_t mem = 0;
for (uint8_t i = 0; i < WLED_MAX_BUSSES; i++) {
if (busConfigs[i] == nullptr) break;
mem += BusManager::memUsage(*busConfigs[i]);
if (mem <= MAX_LED_MEMORY) busses.add(*busConfigs[i]);
/*
// this is done in strip.finalizeInit()
if (busConfigs[i]->adjustBounds(ledCount)) {
mem += busses.memUsage(*busConfigs[i]);
if (mem <= MAX_LED_MEMORY) {
busses.add(*busConfigs[i]);
//RGBW mode is enabled if at least one of the strips is RGBW
strip.isRgbw = (strip.isRgbw || BusManager::isRgbw(busConfigs[i]->type));
//refresh is required to remain off if at least one of the strips requires the refresh.
strip.isOffRefreshRequred |= BusManager::isOffRefreshRequred(busConfigs[i]->type);
}
}
*/
delete busConfigs[i]; busConfigs[i] = nullptr;
}
strip.finalizeInit();
yield();
serializeConfig();
}
yield();
handleWs();
// DEBUG serial logging
#ifdef WLED_DEBUG
if (millis() - debugTime > 29999) {
DEBUG_PRINTLN(F("---DEBUG INFO---"));
DEBUG_PRINT(F("Runtime: ")); DEBUG_PRINTLN(millis());
DEBUG_PRINT(F("Unix time: ")); toki.printTime(toki.getTime());
DEBUG_PRINT(F("Free heap: ")); DEBUG_PRINTLN(ESP.getFreeHeap());
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_PSRAM)
if (psramFound()) {
DEBUG_PRINT(F("Total PSRAM: ")); DEBUG_PRINT(ESP.getPsramSize()/1024); DEBUG_PRINTLN("kB");
DEBUG_PRINT(F("Free PSRAM: ")); DEBUG_PRINT(ESP.getFreePsram()/1024); DEBUG_PRINTLN("kB");
} else
DEBUG_PRINTLN(F("No PSRAM"));
#endif
DEBUG_PRINT(F("Wifi state: ")); DEBUG_PRINTLN(WiFi.status());
if (WiFi.status() != lastWifiState) {
wifiStateChangedTime = millis();
}
lastWifiState = WiFi.status();
DEBUG_PRINT(F("State time: ")); DEBUG_PRINTLN(wifiStateChangedTime);
DEBUG_PRINT(F("NTP last sync: ")); DEBUG_PRINTLN(ntpLastSyncTime);
DEBUG_PRINT(F("Client IP: ")); DEBUG_PRINTLN(Network.localIP());
DEBUG_PRINT(F("Loops/sec: ")); DEBUG_PRINTLN(loops / 60);
DEBUG_PRINT(F("Max UM time[ms]: ")); DEBUG_PRINTLN(maxUsermodMillis);
loops = 0;
maxUsermodMillis = 0;
debugTime = millis();
}
loops++;
#endif // WLED_DEBUG
toki.resetTick();
}
void WLED::setup()
{
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET)
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); //disable brownout detection
#endif
Serial.begin(115200);
Serial.setTimeout(50);
DEBUG_PRINTLN();
DEBUG_PRINT(F("---WLED "));
DEBUG_PRINT(versionString);
DEBUG_PRINT(" ");
DEBUG_PRINT(VERSION);
DEBUG_PRINTLN(F(" INIT---"));
#ifdef ARDUINO_ARCH_ESP32
DEBUG_PRINT(F("esp32 "));
DEBUG_PRINTLN(ESP.getSdkVersion());
#else
DEBUG_PRINT(F("esp8266 "));
DEBUG_PRINTLN(ESP.getCoreVersion());
#endif
DEBUG_PRINT(F("heap "));
DEBUG_PRINTLN(ESP.getFreeHeap());
registerUsermods();
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_PSRAM)
if (psramFound()) {
// GPIO16/GPIO17 reserved for SPI RAM
managed_pin_type pins[2] = { {16, true}, {17, true} };
pinManager.allocateMultiplePins(pins, 2, PinOwner::SPI_RAM);
}
#endif
//DEBUG_PRINT(F("LEDs inited. heap usage ~"));
//DEBUG_PRINTLN(heapPreAlloc - ESP.getFreeHeap());
#ifdef WLED_DEBUG
pinManager.allocatePin(1, true, PinOwner::DebugOut); // GPIO1 reserved for debug output
#endif
#ifdef WLED_USE_DMX //reserve GPIO2 as hardcoded DMX pin
pinManager.allocatePin(2, true, PinOwner::DMX);
#endif
for (uint8_t i=1; i<WLED_MAX_BUTTONS; i++) btnPin[i] = -1;
bool fsinit = false;
DEBUGFS_PRINTLN(F("Mount FS"));
#ifdef ARDUINO_ARCH_ESP32
fsinit = WLED_FS.begin(true);
#else
fsinit = WLED_FS.begin();
#endif
if (!fsinit) {
DEBUGFS_PRINTLN(F("FS failed!"));
errorFlag = ERR_FS_BEGIN;
} else deEEP();
updateFSInfo();
DEBUG_PRINTLN(F("Reading config"));
deserializeConfigFromFS();
DEBUG_PRINTLN(F("Initializing strip"));
beginStrip();
DEBUG_PRINTLN(F("Usermods setup"));
userSetup();
usermods.setup();
if (strcmp(clientSSID, DEFAULT_CLIENT_SSID) == 0)
showWelcomePage = true;
WiFi.persistent(false);
#ifdef WLED_USE_ETHERNET
WiFi.onEvent(WiFiEvent);
#endif
#ifdef WLED_ENABLE_ADALIGHT // reserve GPIO3 (RX) pin for ADALight
if (!pinManager.isPinAllocated(3)) {
Serial.println(F("Ada"));
pinManager.allocatePin(3,false);
} else {
DEBUG_PRINTLN(F("ADALight disabled due to GPIO3 being used."));
}
#endif
// generate module IDs
escapedMac = WiFi.macAddress();
escapedMac.replace(":", "");
escapedMac.toLowerCase();
if (strcmp(cmDNS, "x") == 0) // fill in unique mdns default
{
strcpy_P(cmDNS, PSTR("wled-"));
sprintf(cmDNS + 5, "%*s", 6, escapedMac.c_str() + 6);
}
if (mqttDeviceTopic[0] == 0) {
strcpy_P(mqttDeviceTopic, PSTR("wled/"));
sprintf(mqttDeviceTopic + 5, "%*s", 6, escapedMac.c_str() + 6);
}
if (mqttClientID[0] == 0) {
strcpy_P(mqttClientID, PSTR("WLED-"));
sprintf(mqttClientID + 5, "%*s", 6, escapedMac.c_str() + 6);
}
strip.service();
#ifndef WLED_DISABLE_OTA
if (aOtaEnabled) {
ArduinoOTA.onStart([]() {
#ifdef ESP8266
wifi_set_sleep_type(NONE_SLEEP_T);
#endif
DEBUG_PRINTLN(F("Start ArduinoOTA"));
});
if (strlen(cmDNS) > 0)
ArduinoOTA.setHostname(cmDNS);
}
#endif
#ifdef WLED_ENABLE_DMX
initDMX();
#endif
// HTTP server page init
initServer();
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET)
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1); //enable brownout detector
#endif
}
void WLED::beginStrip()
{
// Initialize NeoPixel Strip and button
strip.finalizeInit(); // busses created during deserializeConfig()
strip.populateDefaultSegments();
strip.setBrightness(0);
strip.setShowCallback(handleOverlayDraw);
if (turnOnAtBoot) {
if (briS > 0) bri = briS;
else if (bri == 0) bri = 128;
} else {
briLast = briS; bri = 0;
}
if (bootPreset > 0) {
applyPreset(bootPreset, CALL_MODE_INIT);
}
colorUpdated(CALL_MODE_INIT);
// init relay pin
if (rlyPin>=0)
digitalWrite(rlyPin, (rlyMde ? bri : !bri));
}
void WLED::initAP(bool resetAP)
{
if (apBehavior == AP_BEHAVIOR_BUTTON_ONLY && !resetAP)
return;
if (!apSSID[0] || resetAP)
strcpy_P(apSSID, PSTR("WLED-AP"));
if (resetAP)
strcpy_P(apPass, PSTR(DEFAULT_AP_PASS));
DEBUG_PRINT(F("Opening access point "));
DEBUG_PRINTLN(apSSID);
WiFi.softAPConfig(IPAddress(4, 3, 2, 1), IPAddress(4, 3, 2, 1), IPAddress(255, 255, 255, 0));
WiFi.softAP(apSSID, apPass, apChannel, apHide);
if (!apActive) // start captive portal if AP active
{
DEBUG_PRINTLN(F("Init AP interfaces"));
server.begin();
if (udpPort > 0 && udpPort != ntpLocalPort) {
udpConnected = notifierUdp.begin(udpPort);
}
if (udpRgbPort > 0 && udpRgbPort != ntpLocalPort && udpRgbPort != udpPort) {
udpRgbConnected = rgbUdp.begin(udpRgbPort);
}
if (udpPort2 > 0 && udpPort2 != ntpLocalPort && udpPort2 != udpPort && udpPort2 != udpRgbPort) {
udp2Connected = notifier2Udp.begin(udpPort2);
}
e131.begin(false, e131Port, e131Universe, E131_MAX_UNIVERSE_COUNT);
dnsServer.setErrorReplyCode(DNSReplyCode::NoError);
dnsServer.start(53, "*", WiFi.softAPIP());
}
apActive = true;
}
bool WLED::initEthernet()
{
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
static bool successfullyConfiguredEthernet = false;
if (successfullyConfiguredEthernet) {
// DEBUG_PRINTLN(F("initE: ETH already successfully configured, ignoring"));
return false;
}
if (ethernetType == WLED_ETH_NONE) {
return false;
}
if (ethernetType >= WLED_NUM_ETH_TYPES) {
DEBUG_PRINT(F("initE: Ignoring attempt for invalid ethernetType ")); DEBUG_PRINTLN(ethernetType);
return false;
}
DEBUG_PRINT(F("initE: Attempting ETH config: ")); DEBUG_PRINTLN(ethernetType);
// Ethernet initialization should only succeed once -- else reboot required
ethernet_settings es = ethernetBoards[ethernetType];
managed_pin_type pinsToAllocate[10] = {
// first six pins are non-configurable
esp32_nonconfigurable_ethernet_pins[0],
esp32_nonconfigurable_ethernet_pins[1],
esp32_nonconfigurable_ethernet_pins[2],
esp32_nonconfigurable_ethernet_pins[3],
esp32_nonconfigurable_ethernet_pins[4],
esp32_nonconfigurable_ethernet_pins[5],
{ (int8_t)es.eth_mdc, true }, // [6] = MDC is output and mandatory
{ (int8_t)es.eth_mdio, true }, // [7] = MDIO is bidirectional and mandatory
{ (int8_t)es.eth_power, true }, // [8] = optional pin, not all boards use
{ ((int8_t)0xFE), false }, // [9] = replaced with eth_clk_mode, mandatory
};
// update the clock pin....
if (es.eth_clk_mode == ETH_CLOCK_GPIO0_IN) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = false;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO0_OUT) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO16_OUT) {
pinsToAllocate[9].pin = 16;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO17_OUT) {
pinsToAllocate[9].pin = 17;
pinsToAllocate[9].isOutput = true;
} else {
DEBUG_PRINT(F("initE: Failing due to invalid eth_clk_mode ("));
DEBUG_PRINT(es.eth_clk_mode);
DEBUG_PRINTLN(F(")"));
return false;
}
if (!pinManager.allocateMultiplePins(pinsToAllocate, 10, PinOwner::Ethernet)) {
DEBUG_PRINTLN(F("initE: Failed to allocate ethernet pins"));
return false;
}
if (!ETH.begin(
(uint8_t) es.eth_address,
(int) es.eth_power,
(int) es.eth_mdc,
(int) es.eth_mdio,
(eth_phy_type_t) es.eth_type,
(eth_clock_mode_t) es.eth_clk_mode
)) {
DEBUG_PRINTLN(F("initC: ETH.begin() failed"));
// de-allocate the allocated pins
for (managed_pin_type mpt : pinsToAllocate) {
pinManager.deallocatePin(mpt.pin, PinOwner::Ethernet);
}
return false;
}
successfullyConfiguredEthernet = true;
DEBUG_PRINTLN(F("initC: *** Ethernet successfully configured! ***"));
return true;
#else
return false; // Ethernet not enabled for build
#endif
}
void WLED::initConnection()
{
#ifdef WLED_ENABLE_WEBSOCKETS
ws.onEvent(wsEvent);
#endif
WiFi.disconnect(true); // close old connections
#ifdef ESP8266
WiFi.setPhyMode(WIFI_PHY_MODE_11N);
#endif
if (staticIP[0] != 0 && staticGateway[0] != 0) {
WiFi.config(staticIP, staticGateway, staticSubnet, IPAddress(1, 1, 1, 1));
} else {
WiFi.config(0U, 0U, 0U);
}
lastReconnectAttempt = millis();
if (!WLED_WIFI_CONFIGURED) {
DEBUG_PRINT(F("No connection configured. "));
if (!apActive)
initAP(); // instantly go to ap mode
return;
} else if (!apActive) {
if (apBehavior == AP_BEHAVIOR_ALWAYS) {
initAP();
} else {
DEBUG_PRINTLN(F("Access point disabled."));
WiFi.softAPdisconnect(true);
WiFi.mode(WIFI_STA);
}
}
showWelcomePage = false;
DEBUG_PRINT(F("Connecting to "));
DEBUG_PRINT(clientSSID);
DEBUG_PRINTLN("...");
// convert the "serverDescription" into a valid DNS hostname (alphanumeric)
char hostname[25] = "wled-";
prepareHostname(hostname);
#ifdef ESP8266
WiFi.hostname(hostname);
#endif
WiFi.begin(clientSSID, clientPass);
#ifdef ARDUINO_ARCH_ESP32
WiFi.setSleep(!noWifiSleep);
WiFi.setHostname(hostname);
#else
wifi_set_sleep_type((noWifiSleep) ? NONE_SLEEP_T : MODEM_SLEEP_T);
#endif
}
void WLED::initInterfaces()
{
IPAddress ipAddress = Network.localIP();
DEBUG_PRINTLN(F("Init STA interfaces"));
#ifndef WLED_DISABLE_HUESYNC
if (hueIP[0] == 0) {
hueIP[0] = ipAddress[0];
hueIP[1] = ipAddress[1];
hueIP[2] = ipAddress[2];
}
#endif
// init Alexa hue emulation
if (alexaEnabled)
alexaInit();
#ifndef WLED_DISABLE_OTA
if (aOtaEnabled)
ArduinoOTA.begin();
#endif
strip.service();
// Set up mDNS responder:
if (strlen(cmDNS) > 0) {
#ifndef WLED_DISABLE_OTA
if (!aOtaEnabled) //ArduinoOTA begins mDNS for us if enabled
MDNS.begin(cmDNS);
#else
MDNS.begin(cmDNS);
#endif
DEBUG_PRINTLN(F("mDNS started"));
MDNS.addService("http", "tcp", 80);
MDNS.addService("wled", "tcp", 80);
MDNS.addServiceTxt("wled", "tcp", "mac", escapedMac.c_str());
}
server.begin();
if (udpPort > 0 && udpPort != ntpLocalPort) {
udpConnected = notifierUdp.begin(udpPort);
if (udpConnected && udpRgbPort != udpPort)
udpRgbConnected = rgbUdp.begin(udpRgbPort);
if (udpConnected && udpPort2 != udpPort && udpPort2 != udpRgbPort)
udp2Connected = notifier2Udp.begin(udpPort2);
}
if (ntpEnabled)
ntpConnected = ntpUdp.begin(ntpLocalPort);
#ifndef WLED_DISABLE_BLYNK
initBlynk(blynkApiKey, blynkHost, blynkPort);
#endif
e131.begin(e131Multicast, e131Port, e131Universe, E131_MAX_UNIVERSE_COUNT);
reconnectHue();
initMqtt();
interfacesInited = true;
wasConnected = true;
}
byte stacO = 0;
uint32_t lastHeap;
unsigned long heapTime = 0;
void WLED::handleConnection()
{
if (millis() < 2000 && (!WLED_WIFI_CONFIGURED || apBehavior == AP_BEHAVIOR_ALWAYS))
return;
if (lastReconnectAttempt == 0)
initConnection();
// reconnect WiFi to clear stale allocations if heap gets too low
if (millis() - heapTime > 5000) {
uint32_t heap = ESP.getFreeHeap();
if (heap < JSON_BUFFER_SIZE+512 && lastHeap < JSON_BUFFER_SIZE+512) {
DEBUG_PRINT(F("Heap too low! "));
DEBUG_PRINTLN(heap);
forceReconnect = true;
}
lastHeap = heap;
heapTime = millis();
}
byte stac = 0;
if (apActive) {
#ifdef ESP8266
stac = wifi_softap_get_station_num();
#else
wifi_sta_list_t stationList;
esp_wifi_ap_get_sta_list(&stationList);
stac = stationList.num;
#endif
if (stac != stacO) {
stacO = stac;
DEBUG_PRINT(F("Connected AP clients: "));
DEBUG_PRINTLN(stac);
if (!WLED_CONNECTED && WLED_WIFI_CONFIGURED) { // trying to connect, but not connected
if (stac)
WiFi.disconnect(); // disable search so that AP can work
else
initConnection(); // restart search
}
}
}
if (forceReconnect) {
DEBUG_PRINTLN(F("Forcing reconnect."));
initConnection();
interfacesInited = false;
forceReconnect = false;
wasConnected = false;
return;
}
if (!Network.isConnected()) {
if (interfacesInited) {
DEBUG_PRINTLN(F("Disconnected!"));
interfacesInited = false;
initConnection();
}
if (millis() - lastReconnectAttempt > ((stac) ? 300000 : 20000) && WLED_WIFI_CONFIGURED)
initConnection();
if (!apActive && millis() - lastReconnectAttempt > 12000 && (!wasConnected || apBehavior == AP_BEHAVIOR_NO_CONN))
initAP();
} else if (!interfacesInited) { // newly connected
DEBUG_PRINTLN("");
DEBUG_PRINT(F("Connected! IP address: "));
DEBUG_PRINTLN(Network.localIP());
initInterfaces();
userConnected();
usermods.connected();
// shut down AP
if (apBehavior != AP_BEHAVIOR_ALWAYS && apActive) {
dnsServer.stop();
WiFi.softAPdisconnect(true);
apActive = false;
DEBUG_PRINTLN(F("Access point disabled."));
}
}
}