WLED/wled00/bus_manager.h
Blaz Kristan a696afaeb8 Color mangling macros.
Removed legacy Auto White caclulation.
2021-10-26 20:35:45 +02:00

621 lines
18 KiB
C++

#ifndef BusManager_h
#define BusManager_h
/*
* Class for addressing various light types
*/
#include "const.h"
#include "pin_manager.h"
#include "bus_wrapper.h"
#include <Arduino.h>
//colors.cpp
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
void colorRGBtoRGBW(byte* rgb);
// enable additional debug output
#ifdef WLED_DEBUG
#ifndef ESP8266
#include <rom/rtc.h>
#endif
#define DEBUG_PRINT(x) Serial.print(x)
#define DEBUG_PRINTLN(x) Serial.println(x)
#define DEBUG_PRINTF(x...) Serial.printf(x)
#else
#define DEBUG_PRINT(x)
#define DEBUG_PRINTLN(x)
#define DEBUG_PRINTF(x...)
#endif
#define GET_BIT(var,bit) (((var)>>(bit))&0x01)
#define SET_BIT(var,bit) ((var)|=(uint16_t)(0x0001<<(bit)))
#define UNSET_BIT(var,bit) ((var)&=(~(uint16_t)(0x0001<<(bit))))
//color mangling macros
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
#define R(c) (byte((c) >> 16))
#define G(c) (byte((c) >> 8))
#define B(c) (byte(c))
#define W(c) (byte((c) >> 24))
//temporary struct for passing bus configuration to bus
struct BusConfig {
uint8_t type = TYPE_WS2812_RGB;
uint16_t count;
uint16_t start;
uint8_t colorOrder;
bool reversed;
uint8_t skipAmount;
bool refreshReq;
uint8_t pins[5] = {LEDPIN, 255, 255, 255, 255};
uint8_t autoWhite;
BusConfig(uint8_t busType, uint8_t* ppins, uint16_t pstart, uint16_t len = 1, uint8_t pcolorOrder = COL_ORDER_GRB, bool rev = false, uint8_t skip = 0, uint8_t aw = 0) {
refreshReq = (bool) GET_BIT(busType,7);
type = busType & 0x7F; // bit 7 may be/is hacked to include refresh info (1=refresh in off state, 0=no refresh)
count = len; start = pstart; colorOrder = pcolorOrder; reversed = rev; skipAmount = skip; autoWhite = aw;
uint8_t nPins = 1;
if (type >= TYPE_NET_DDP_RGB && type < 96) nPins = 4; //virtual network bus. 4 "pins" store IP address
else if (type > 47) nPins = 2;
else if (type > 40 && type < 46) nPins = NUM_PWM_PINS(type);
for (uint8_t i = 0; i < nPins; i++) pins[i] = ppins[i];
}
//validates start and length and extends total if needed
bool adjustBounds(uint16_t& total) {
if (!count) count = 1;
if (count > MAX_LEDS_PER_BUS) count = MAX_LEDS_PER_BUS;
if (start >= MAX_LEDS) return false;
//limit length of strip if it would exceed total permissible LEDs
if (start + count > MAX_LEDS) count = MAX_LEDS - start;
//extend total count accordingly
if (start + count > total) total = start + count;
return true;
}
};
//parent class of BusDigital and BusPwm
class Bus {
public:
Bus(uint8_t type, uint16_t start, uint8_t aw) {
_type = type;
_start = start;
_autoWhiteMode = isRgbw(_type) ? aw : RGBW_MODE_MANUAL_ONLY;
};
virtual ~Bus() {} //throw the bus under the bus
virtual void show() {}
virtual bool canShow() { return true; }
virtual void setPixelColor(uint16_t pix, uint32_t c) {};
virtual void setPixelColor(uint16_t pix, uint32_t c, uint8_t cct) {};
virtual uint32_t getPixelColor(uint16_t pix) { return 0; };
virtual void setBrightness(uint8_t b) {};
virtual void cleanup() {};
virtual uint8_t getPins(uint8_t* pinArray) { return 0; }
inline uint16_t getLength() { return _len; }
virtual void setColorOrder() {}
virtual uint8_t getColorOrder() { return COL_ORDER_RGB; }
virtual uint8_t skippedLeds() { return 0; }
inline uint8_t getAutoWhiteMode() { return _autoWhiteMode; }
inline uint16_t getStart() { return _start; }
inline void setStart(uint16_t start) { _start = start; }
inline uint8_t getType() { return _type; }
inline bool isOk() { return _valid; }
inline bool isOffRefreshRequired() { return _needsRefresh; }
bool containsPixel(uint16_t pix) { return pix >= _start && pix < _start+_len; }
virtual bool isRgbw() { return Bus::isRgbw(_type); }
static bool isRgbw(uint8_t type) {
if (type == TYPE_SK6812_RGBW || type == TYPE_TM1814) return true;
if (type > TYPE_ONOFF && type <= TYPE_ANALOG_5CH && type != TYPE_ANALOG_3CH) return true;
return false;
}
bool reversed = false;
protected:
uint8_t _type = TYPE_NONE;
uint8_t _bri = 255;
uint16_t _start = 0;
uint16_t _len = 1;
bool _valid = false;
bool _needsRefresh = false;
uint8_t _autoWhiteMode = 0;
uint32_t autoWhiteCalc(uint32_t c) {
switch (_autoWhiteMode) {
case RGBW_MODE_MANUAL_ONLY:
break;
default:
//white value is set to lowest RGB channel, thank you to @Def3nder!
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
if (_autoWhiteMode == RGBW_MODE_AUTO_BRIGHTER || w == 0) w = r < g ? (r < b ? r : b) : (g < b ? g : b);
if (_autoWhiteMode == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; }
c = RGBW32(r, g, b, w);
break;
}
return c;
}
};
class BusDigital : public Bus {
public:
BusDigital(BusConfig &bc, uint8_t nr) : Bus(bc.type, bc.start, bc.autoWhite) {
if (!IS_DIGITAL(bc.type) || !bc.count) return;
if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
_pins[0] = bc.pins[0];
if (IS_2PIN(bc.type)) {
if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
cleanup(); return;
}
_pins[1] = bc.pins[1];
}
reversed = bc.reversed;
_needsRefresh = bc.refreshReq || bc.type == TYPE_TM1814;
_skip = bc.skipAmount; //sacrificial pixels
_len = bc.count + _skip;
_iType = PolyBus::getI(bc.type, _pins, nr);
if (_iType == I_NONE) return;
_busPtr = PolyBus::create(_iType, _pins, _len, nr);
_valid = (_busPtr != nullptr);
_colorOrder = bc.colorOrder;
DEBUG_PRINTF("Successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u)\n",nr, _len, bc.type, _pins[0],_pins[1],_iType);
};
inline void show() {
PolyBus::show(_busPtr, _iType);
}
inline bool canShow() {
return PolyBus::canShow(_busPtr, _iType);
}
void setBrightness(uint8_t b) {
//Fix for turning off onboard LED breaking bus
#ifdef LED_BUILTIN
if (_bri == 0 && b > 0) {
if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) PolyBus::begin(_busPtr, _iType, _pins);
}
#endif
_bri = b;
PolyBus::setBrightness(_busPtr, _iType, b);
}
void setPixelColor(uint16_t pix, uint32_t c) {
if (getAutoWhiteMode() != RGBW_MODE_MANUAL_ONLY) c = autoWhiteCalc(c);
if (reversed) pix = _len - pix -1;
else pix += _skip;
PolyBus::setPixelColor(_busPtr, _iType, pix, c, _colorOrder);
}
void setPixelColor(uint16_t pix, uint32_t c, uint8_t cct) {
c = colorBalanceFromKelvin(2000+(cct<<5), c); // color correction from CCT
setPixelColor(pix, c);
}
uint32_t getPixelColor(uint16_t pix) {
if (reversed) pix = _len - pix -1;
else pix += _skip;
return PolyBus::getPixelColor(_busPtr, _iType, pix, _colorOrder);
}
inline uint8_t getColorOrder() {
return _colorOrder;
}
inline uint16_t getLength() {
return _len - _skip;
}
uint8_t getPins(uint8_t* pinArray) {
uint8_t numPins = IS_2PIN(_type) ? 2 : 1;
for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i];
return numPins;
}
void setColorOrder(uint8_t colorOrder) {
if (colorOrder > 5) return;
_colorOrder = colorOrder;
}
inline uint8_t skippedLeds() {
return _skip;
}
inline void reinit() {
PolyBus::begin(_busPtr, _iType, _pins);
}
void cleanup() {
DEBUG_PRINTLN(F("Digital Cleanup."));
PolyBus::cleanup(_busPtr, _iType);
_iType = I_NONE;
_valid = false;
_busPtr = nullptr;
pinManager.deallocatePin(_pins[1], PinOwner::BusDigital);
pinManager.deallocatePin(_pins[0], PinOwner::BusDigital);
}
~BusDigital() {
cleanup();
}
private:
uint8_t _colorOrder = COL_ORDER_GRB;
uint8_t _pins[2] = {255, 255};
uint8_t _iType = I_NONE;
uint8_t _skip = 0;
void * _busPtr = nullptr;
};
class BusPwm : public Bus {
public:
BusPwm(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
_valid = false;
if (!IS_PWM(bc.type)) return;
uint8_t numPins = NUM_PWM_PINS(bc.type);
#ifdef ESP8266
analogWriteRange(255); //same range as one RGB channel
analogWriteFreq(WLED_PWM_FREQ);
#else
_ledcStart = pinManager.allocateLedc(numPins);
if (_ledcStart == 255) { //no more free LEDC channels
deallocatePins(); return;
}
#endif
for (uint8_t i = 0; i < numPins; i++) {
uint8_t currentPin = bc.pins[i];
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) {
deallocatePins(); return;
}
_pins[i] = currentPin; // store only after allocatePin() succeeds
#ifdef ESP8266
pinMode(_pins[i], OUTPUT);
#else
ledcSetup(_ledcStart + i, WLED_PWM_FREQ, 8);
ledcAttachPin(_pins[i], _ledcStart + i);
#endif
}
reversed = bc.reversed;
_valid = true;
};
void setPixelColor(uint16_t pix, uint32_t c, uint8_t cct) {
if (pix != 0 || !_valid) return; //only react to first pixel
c = colorBalanceFromKelvin(2000+(cct<<5), c); // color correction from CCT (w remains unchanged)
if (getAutoWhiteMode() != RGBW_MODE_MANUAL_ONLY) c = autoWhiteCalc(c);
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
switch (_type) {
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
_data[0] = w; //max(r, max(g, max(b, w)));
break;
case TYPE_ANALOG_2CH: //warm white + cold white
// perhaps a non-linear adjustment would be in order. need to test
//w = max(r, max(g, max(b, w)));
_data[1] = (w * cct) / 255;
_data[0] = (w * (255-cct)) / 255;
break;
case TYPE_ANALOG_5CH: //RGB + warm white + cold white
// perhaps a non-linear adjustment would be in order. need to test
_data[4] = (w * cct) / 255;
w = (w * (255-cct)) / 255;
case TYPE_ANALOG_4CH: //RGBW
_data[3] = w;
case TYPE_ANALOG_3CH: //standard dumb RGB
_data[0] = r; _data[1] = g; _data[2] = b;
break;
}
}
void setPixelColor(uint16_t pix, uint32_t c) {
if (pix != 0 || !_valid) return; //only react to first pixel
if (getAutoWhiteMode() != RGBW_MODE_MANUAL_ONLY) c = autoWhiteCalc(c);
uint8_t r = R(c);
uint8_t g = G(c);
uint8_t b = B(c);
uint8_t w = W(c);
switch (_type) {
case TYPE_ANALOG_1CH: //one channel (white), use highest RGBW value
_data[0] = max(r, max(g, max(b, w))); break;
case TYPE_ANALOG_2CH: //warm white + cold white
case TYPE_ANALOG_3CH: //standard dumb RGB
case TYPE_ANALOG_4CH: //standard dumb RGBW
case TYPE_ANALOG_5CH: //we'll want the white handling from 2CH here + RGB
_data[0] = r; _data[1] = g; _data[2] = b; _data[3] = w; _data[4] = w; break;
}
}
//does no index check
uint32_t getPixelColor(uint16_t pix) {
if (!_valid) return 0;
return RGBW32(_data[0], _data[1], _data[2], _data[3]);
}
void show() {
if (!_valid) return;
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
uint8_t scaled = (_data[i] * _bri) / 255;
if (reversed) scaled = 255 - scaled;
#ifdef ESP8266
analogWrite(_pins[i], scaled);
#else
ledcWrite(_ledcStart + i, scaled);
#endif
}
}
inline void setBrightness(uint8_t b) {
_bri = b;
}
uint8_t getPins(uint8_t* pinArray) {
if (!_valid) return 0;
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
pinArray[i] = _pins[i];
}
return numPins;
}
inline void cleanup() {
deallocatePins();
}
~BusPwm() {
cleanup();
}
private:
uint8_t _pins[5] = {255, 255, 255, 255, 255};
uint8_t _data[5] = {255, 255, 255, 255, 255};
#ifdef ARDUINO_ARCH_ESP32
uint8_t _ledcStart = 255;
#endif
void deallocatePins() {
uint8_t numPins = NUM_PWM_PINS(_type);
for (uint8_t i = 0; i < numPins; i++) {
pinManager.deallocatePin(_pins[i], PinOwner::BusPwm);
if (!pinManager.isPinOk(_pins[i])) continue;
#ifdef ESP8266
digitalWrite(_pins[i], LOW); //turn off PWM interrupt
#else
if (_ledcStart < 16) ledcDetachPin(_pins[i]);
#endif
}
#ifdef ARDUINO_ARCH_ESP32
pinManager.deallocateLedc(_ledcStart, numPins);
#endif
}
};
class BusNetwork : public Bus {
public:
BusNetwork(BusConfig &bc) : Bus(bc.type, bc.start, bc.autoWhite) {
_valid = false;
// switch (bc.type) {
// case TYPE_NET_ARTNET_RGB:
// _rgbw = false;
// _UDPtype = 2;
// break;
// case TYPE_NET_E131_RGB:
// _rgbw = false;
// _UDPtype = 1;
// break;
// case TYPE_NET_DDP_RGB:
// _rgbw = false;
// _UDPtype = 0;
// break;
// default:
_rgbw = false;
_UDPtype = bc.type - TYPE_NET_DDP_RGB;
// break;
// }
_UDPchannels = _rgbw ? 4 : 3;
_data = (byte *)malloc(bc.count * _UDPchannels);
if (_data == nullptr) return;
memset(_data, 0, bc.count * _UDPchannels);
_len = bc.count;
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
_broadcastLock = false;
_valid = true;
};
void setPixelColor(uint16_t pix, uint32_t c) {
if (!_valid || pix >= _len) return;
if (getAutoWhiteMode() != RGBW_MODE_MANUAL_ONLY) c = autoWhiteCalc(c);
uint16_t offset = pix * _UDPchannels;
_data[offset] = R(c);
_data[offset+1] = G(c);
_data[offset+2] = B(c);
if (_rgbw) _data[offset+3] = W(c);
}
void setPixelColor(uint16_t pix, uint32_t c, uint8_t cct) {
c = colorBalanceFromKelvin(2000+(cct<<5), c); // color correction from CCT
setPixelColor(pix, c);
}
uint32_t getPixelColor(uint16_t pix) {
if (!_valid || pix >= _len) return 0;
uint16_t offset = pix * _UDPchannels;
return RGBW32(_data[offset], _data[offset+1], _data[offset+2], _rgbw ? (_data[offset+3] << 24) : 0);
}
void show() {
if (!_valid || !canShow()) return;
_broadcastLock = true;
realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw);
_broadcastLock = false;
}
inline bool canShow() {
// this should be a return value from UDP routine if it is still sending data out
return !_broadcastLock;
}
inline void setBrightness(uint8_t b) {
_bri = b;
}
uint8_t getPins(uint8_t* pinArray) {
for (uint8_t i = 0; i < 4; i++) {
pinArray[i] = _client[i];
}
return 4;
}
inline bool isRgbw() {
return _rgbw;
}
inline uint16_t getLength() {
return _len;
}
void cleanup() {
_type = I_NONE;
_valid = false;
if (_data != nullptr) free(_data);
_data = nullptr;
}
~BusNetwork() {
cleanup();
}
private:
IPAddress _client;
uint8_t _bri = 255;
uint8_t _UDPtype;
uint8_t _UDPchannels;
bool _rgbw;
bool _broadcastLock;
byte *_data;
};
class BusManager {
public:
BusManager() {
};
//utility to get the approx. memory usage of a given BusConfig
static uint32_t memUsage(BusConfig &bc) {
uint8_t type = bc.type;
uint16_t len = bc.count;
if (type > 15 && type < 32) {
#ifdef ESP8266
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
if (type > 29) return len*20; //RGBW
return len*15;
}
if (type > 29) return len*4; //RGBW
return len*3;
#else //ESP32 RMT uses double buffer?
if (type > 29) return len*8; //RGBW
return len*6;
#endif
}
if (type > 31 && type < 48) return 5;
if (type == 44 || type == 45) return len*4; //RGBW
return len*3; //RGB
}
int add(BusConfig &bc) {
if (numBusses >= WLED_MAX_BUSSES) return -1;
if (bc.type >= TYPE_NET_DDP_RGB && bc.type < 96) {
busses[numBusses] = new BusNetwork(bc);
} else if (IS_DIGITAL(bc.type)) {
busses[numBusses] = new BusDigital(bc, numBusses);
} else {
busses[numBusses] = new BusPwm(bc);
}
return numBusses++;
}
//do not call this method from system context (network callback)
void removeAll() {
DEBUG_PRINTLN(F("Removing all."));
//prevents crashes due to deleting busses while in use.
while (!canAllShow()) yield();
for (uint8_t i = 0; i < numBusses; i++) delete busses[i];
numBusses = 0;
}
void show() {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->show();
}
}
void setPixelColor(uint16_t pix, uint32_t c, int16_t cct=-1) {
for (uint8_t i = 0; i < numBusses; i++) {
Bus* b = busses[i];
uint16_t bstart = b->getStart();
if (pix < bstart || pix >= bstart + b->getLength()) continue;
if (cct<0) busses[i]->setPixelColor(pix - bstart, c); // no white balance
else busses[i]->setPixelColor(pix - bstart, c, cct); // do white balance
}
}
void setBrightness(uint8_t b) {
for (uint8_t i = 0; i < numBusses; i++) {
busses[i]->setBrightness(b);
}
}
uint32_t getPixelColor(uint16_t pix) {
for (uint8_t i = 0; i < numBusses; i++) {
Bus* b = busses[i];
uint16_t bstart = b->getStart();
if (pix < bstart || pix >= bstart + b->getLength()) continue;
return b->getPixelColor(pix - bstart);
}
return 0;
}
bool canAllShow() {
for (uint8_t i = 0; i < numBusses; i++) {
if (!busses[i]->canShow()) return false;
}
return true;
}
Bus* getBus(uint8_t busNr) {
if (busNr >= numBusses) return nullptr;
return busses[busNr];
}
inline uint8_t getNumBusses() {
return numBusses;
}
uint16_t getTotalLength() {
uint16_t len = 0;
for (uint8_t i=0; i<numBusses; i++ ) len += busses[i]->getLength();
return len;
}
private:
uint8_t numBusses = 0;
Bus* busses[WLED_MAX_BUSSES];
};
#endif