8ccf349458
Fix bus re-init causing full brightness (every show() now attempts to set the brightness, bus will ignore this if it stays the same)
638 lines
20 KiB
C++
638 lines
20 KiB
C++
/*
|
|
* Class implementation for addressing various light types
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
#include <IPAddress.h>
|
|
#include "const.h"
|
|
#include "pin_manager.h"
|
|
#include "bus_wrapper.h"
|
|
#include "bus_manager.h"
|
|
|
|
//colors.cpp
|
|
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
|
|
uint16_t approximateKelvinFromRGB(uint32_t rgb);
|
|
void colorRGBtoRGBW(byte* rgb);
|
|
|
|
//udp.cpp
|
|
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, byte *buffer, uint8_t bri=255, bool isRGBW=false);
|
|
|
|
// enable additional debug output
|
|
#if defined(WLED_DEBUG_HOST)
|
|
#include "net_debug.h"
|
|
#define DEBUGOUT NetDebug
|
|
#else
|
|
#define DEBUGOUT Serial
|
|
#endif
|
|
|
|
#ifdef WLED_DEBUG
|
|
#ifndef ESP8266
|
|
#include <rom/rtc.h>
|
|
#endif
|
|
#define DEBUG_PRINT(x) DEBUGOUT.print(x)
|
|
#define DEBUG_PRINTLN(x) DEBUGOUT.println(x)
|
|
#define DEBUG_PRINTF(x...) DEBUGOUT.printf(x)
|
|
#else
|
|
#define DEBUG_PRINT(x)
|
|
#define DEBUG_PRINTLN(x)
|
|
#define DEBUG_PRINTF(x...)
|
|
#endif
|
|
|
|
//color mangling macros
|
|
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
|
|
#define R(c) (byte((c) >> 16))
|
|
#define G(c) (byte((c) >> 8))
|
|
#define B(c) (byte(c))
|
|
#define W(c) (byte((c) >> 24))
|
|
|
|
|
|
void ColorOrderMap::add(uint16_t start, uint16_t len, uint8_t colorOrder) {
|
|
if (_count >= WLED_MAX_COLOR_ORDER_MAPPINGS) {
|
|
return;
|
|
}
|
|
if (len == 0) {
|
|
return;
|
|
}
|
|
if (colorOrder > COL_ORDER_MAX) {
|
|
return;
|
|
}
|
|
_mappings[_count].start = start;
|
|
_mappings[_count].len = len;
|
|
_mappings[_count].colorOrder = colorOrder;
|
|
_count++;
|
|
}
|
|
|
|
uint8_t IRAM_ATTR ColorOrderMap::getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
|
|
if (_count == 0) return defaultColorOrder;
|
|
// upper nibble containd W swap information
|
|
uint8_t swapW = defaultColorOrder >> 4;
|
|
for (uint8_t i = 0; i < _count; i++) {
|
|
if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
|
|
return _mappings[i].colorOrder | (swapW << 4);
|
|
}
|
|
}
|
|
return defaultColorOrder;
|
|
}
|
|
|
|
|
|
uint32_t Bus::autoWhiteCalc(uint32_t c) {
|
|
uint8_t aWM = _autoWhiteMode;
|
|
if (_gAWM < 255) aWM = _gAWM;
|
|
if (aWM == RGBW_MODE_MANUAL_ONLY) return c;
|
|
uint8_t w = W(c);
|
|
//ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
|
|
if (w > 0 && aWM == RGBW_MODE_DUAL) return c;
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
if (aWM == RGBW_MODE_MAX) return RGBW32(r, g, b, r > g ? (r > b ? r : b) : (g > b ? g : b)); // brightest RGB channel
|
|
w = r < g ? (r < b ? r : b) : (g < b ? g : b);
|
|
if (aWM == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
|
|
return RGBW32(r, g, b, w);
|
|
}
|
|
|
|
uint8_t *Bus::allocData(size_t size) {
|
|
if (_data) free(_data); // should not happen, but for safety
|
|
return _data = (uint8_t *)(size>0 ? calloc(size, sizeof(uint8_t)) : nullptr);
|
|
}
|
|
|
|
|
|
BusDigital::BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, bc.count, bc.reversed, (bc.refreshReq || bc.type == TYPE_TM1814))
|
|
, _skip(bc.skipAmount) //sacrificial pixels
|
|
, _colorOrder(bc.colorOrder)
|
|
, _colorOrderMap(com)
|
|
{
|
|
if (!IS_DIGITAL(bc.type) || !bc.count) return;
|
|
if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
|
|
_frequencykHz = 0U;
|
|
_pins[0] = bc.pins[0];
|
|
if (IS_2PIN(bc.type)) {
|
|
if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
|
|
cleanup();
|
|
return;
|
|
}
|
|
_pins[1] = bc.pins[1];
|
|
_frequencykHz = bc.frequency ? bc.frequency : 2000U; // 2MHz clock if undefined
|
|
}
|
|
_iType = PolyBus::getI(bc.type, _pins, nr);
|
|
if (_iType == I_NONE) return;
|
|
if (bc.doubleBuffer && !allocData(bc.count * (Bus::hasWhite(_type) + 3*Bus::hasRGB(_type)))) return; //warning: hardcoded channel count
|
|
_buffering = bc.doubleBuffer;
|
|
uint16_t lenToCreate = bc.count;
|
|
if (bc.type == TYPE_WS2812_1CH_X3) lenToCreate = NUM_ICS_WS2812_1CH_3X(bc.count); // only needs a third of "RGB" LEDs for NeoPixelBus
|
|
_busPtr = PolyBus::create(_iType, _pins, lenToCreate + _skip, nr, _frequencykHz);
|
|
_valid = (_busPtr != nullptr);
|
|
DEBUG_PRINTF("%successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u)\n", _valid?"S":"Uns", nr, bc.count, bc.type, _pins[0], _pins[1], _iType);
|
|
}
|
|
|
|
void BusDigital::show() {
|
|
if (!_valid) return;
|
|
if (_buffering) { // should be _data != nullptr, but that causes ~20% FPS drop
|
|
size_t channels = Bus::hasWhite(_type) + 3*Bus::hasRGB(_type);
|
|
for (size_t i=0; i<_len; i++) {
|
|
size_t offset = i*channels;
|
|
uint8_t co = _colorOrderMap.getPixelColorOrder(i+_start, _colorOrder);
|
|
uint32_t c;
|
|
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs (_len is always a multiple of 3)
|
|
switch (i%3) {
|
|
case 0: c = RGBW32(_data[offset] , _data[offset+1], _data[offset+2], 0); break;
|
|
case 1: c = RGBW32(_data[offset-1], _data[offset] , _data[offset+1], 0); break;
|
|
case 2: c = RGBW32(_data[offset-2], _data[offset-1], _data[offset] , 0); break;
|
|
}
|
|
} else {
|
|
c = RGBW32(_data[offset],_data[offset+1],_data[offset+2],(Bus::hasWhite(_type)?_data[offset+3]:0));
|
|
}
|
|
uint16_t pix = i;
|
|
if (_reversed) pix = _len - pix -1;
|
|
else pix += _skip;
|
|
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co);
|
|
}
|
|
}
|
|
PolyBus::show(_busPtr, _iType, !_buffering); // faster if buffer consistency is not important
|
|
}
|
|
|
|
bool BusDigital::canShow() {
|
|
if (!_valid) return true;
|
|
return PolyBus::canShow(_busPtr, _iType);
|
|
}
|
|
|
|
void BusDigital::setBrightness(uint8_t b) {
|
|
if (_bri == b) return;
|
|
//Fix for turning off onboard LED breaking bus
|
|
#ifdef LED_BUILTIN
|
|
if (_bri == 0) { // && b > 0, covered by guard if above
|
|
if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) reinit();
|
|
}
|
|
#endif
|
|
uint8_t prevBri = _bri;
|
|
Bus::setBrightness(b);
|
|
PolyBus::setBrightness(_busPtr, _iType, b);
|
|
|
|
if (_buffering) return;
|
|
|
|
// must update/repaint every LED in the NeoPixelBus buffer to the new brightness
|
|
// the only case where repainting is unnecessary is when all pixels are set after the brightness change but before the next show
|
|
// (which we can't rely on)
|
|
uint16_t hwLen = _len;
|
|
if (_type == TYPE_WS2812_1CH_X3) hwLen = NUM_ICS_WS2812_1CH_3X(_len); // only needs a third of "RGB" LEDs for NeoPixelBus
|
|
for (uint_fast16_t i = 0; i < hwLen; i++) {
|
|
// use 0 as color order, actual order does not matter here as we just update the channel values as-is
|
|
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, i, 0),prevBri);
|
|
PolyBus::setPixelColor(_busPtr, _iType, i, c, 0);
|
|
}
|
|
}
|
|
|
|
//If LEDs are skipped, it is possible to use the first as a status LED.
|
|
//TODO only show if no new show due in the next 50ms
|
|
void BusDigital::setStatusPixel(uint32_t c) {
|
|
if (_valid && _skip) {
|
|
PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
|
|
if (canShow()) PolyBus::show(_busPtr, _iType);
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR BusDigital::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (!_valid) return;
|
|
if (Bus::hasWhite(_type)) c = autoWhiteCalc(c);
|
|
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
|
|
if (_buffering) { // should be _data != nullptr, but that causes ~20% FPS drop
|
|
size_t channels = Bus::hasWhite(_type) + 3*Bus::hasRGB(_type);
|
|
size_t offset = pix*channels;
|
|
if (Bus::hasRGB(_type)) {
|
|
_data[offset++] = R(c);
|
|
_data[offset++] = G(c);
|
|
_data[offset++] = B(c);
|
|
}
|
|
if (Bus::hasWhite(_type)) _data[offset] = W(c);
|
|
} else {
|
|
if (_reversed) pix = _len - pix -1;
|
|
else pix += _skip;
|
|
uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
|
|
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
|
|
uint16_t pOld = pix;
|
|
pix = IC_INDEX_WS2812_1CH_3X(pix);
|
|
uint32_t cOld = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, pix, co),_bri);
|
|
switch (pOld % 3) { // change only the single channel (TODO: this can cause loss because of get/set)
|
|
case 0: c = RGBW32(R(cOld), W(c) , B(cOld), 0); break;
|
|
case 1: c = RGBW32(W(c) , G(cOld), B(cOld), 0); break;
|
|
case 2: c = RGBW32(R(cOld), G(cOld), W(c) , 0); break;
|
|
}
|
|
}
|
|
PolyBus::setPixelColor(_busPtr, _iType, pix, c, co);
|
|
}
|
|
}
|
|
|
|
// returns original color if global buffering is enabled, else returns lossly restored color from bus
|
|
uint32_t BusDigital::getPixelColor(uint16_t pix) {
|
|
if (!_valid) return 0;
|
|
if (_buffering) { // should be _data != nullptr, but that causes ~20% FPS drop
|
|
size_t channels = Bus::hasWhite(_type) + 3*Bus::hasRGB(_type);
|
|
size_t offset = pix*channels;
|
|
uint32_t c;
|
|
if (!Bus::hasRGB(_type)) {
|
|
c = RGBW32(_data[offset], _data[offset], _data[offset], _data[offset]);
|
|
} else {
|
|
c = RGBW32(_data[offset], _data[offset+1], _data[offset+2], Bus::hasWhite(_type) ? _data[offset+3] : 0);
|
|
}
|
|
return c;
|
|
} else {
|
|
if (_reversed) pix = _len - pix -1;
|
|
else pix += _skip;
|
|
uint8_t co = _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder);
|
|
uint32_t c = restoreColorLossy(PolyBus::getPixelColor(_busPtr, _iType, (_type==TYPE_WS2812_1CH_X3) ? IC_INDEX_WS2812_1CH_3X(pix) : pix, co),_bri);
|
|
if (_type == TYPE_WS2812_1CH_X3) { // map to correct IC, each controls 3 LEDs
|
|
uint8_t r = R(c);
|
|
uint8_t g = _reversed ? B(c) : G(c); // should G and B be switched if _reversed?
|
|
uint8_t b = _reversed ? G(c) : B(c);
|
|
switch (pix % 3) { // get only the single channel
|
|
case 0: c = RGBW32(g, g, g, g); break;
|
|
case 1: c = RGBW32(r, r, r, r); break;
|
|
case 2: c = RGBW32(b, b, b, b); break;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
}
|
|
|
|
uint8_t BusDigital::getPins(uint8_t* pinArray) {
|
|
uint8_t numPins = IS_2PIN(_type) ? 2 : 1;
|
|
for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i];
|
|
return numPins;
|
|
}
|
|
|
|
void BusDigital::setColorOrder(uint8_t colorOrder) {
|
|
// upper nibble contains W swap information
|
|
if ((colorOrder & 0x0F) > 5) return;
|
|
_colorOrder = colorOrder;
|
|
}
|
|
|
|
void BusDigital::reinit() {
|
|
if (!_valid) return;
|
|
PolyBus::begin(_busPtr, _iType, _pins);
|
|
}
|
|
|
|
void BusDigital::cleanup() {
|
|
DEBUG_PRINTLN(F("Digital Cleanup."));
|
|
PolyBus::cleanup(_busPtr, _iType);
|
|
_iType = I_NONE;
|
|
_valid = false;
|
|
_busPtr = nullptr;
|
|
if (_data != nullptr) freeData();
|
|
pinManager.deallocatePin(_pins[1], PinOwner::BusDigital);
|
|
pinManager.deallocatePin(_pins[0], PinOwner::BusDigital);
|
|
}
|
|
|
|
|
|
BusPwm::BusPwm(BusConfig &bc)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
|
|
{
|
|
if (!IS_PWM(bc.type)) return;
|
|
uint8_t numPins = NUM_PWM_PINS(bc.type);
|
|
_frequency = bc.frequency ? bc.frequency : WLED_PWM_FREQ;
|
|
|
|
#ifdef ESP8266
|
|
analogWriteRange(255); //same range as one RGB channel
|
|
analogWriteFreq(_frequency);
|
|
#else
|
|
_ledcStart = pinManager.allocateLedc(numPins);
|
|
if (_ledcStart == 255) { //no more free LEDC channels
|
|
deallocatePins(); return;
|
|
}
|
|
#endif
|
|
|
|
for (uint8_t i = 0; i < numPins; i++) {
|
|
uint8_t currentPin = bc.pins[i];
|
|
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) {
|
|
deallocatePins(); return;
|
|
}
|
|
_pins[i] = currentPin; //store only after allocatePin() succeeds
|
|
#ifdef ESP8266
|
|
pinMode(_pins[i], OUTPUT);
|
|
#else
|
|
ledcSetup(_ledcStart + i, _frequency, 8);
|
|
ledcAttachPin(_pins[i], _ledcStart + i);
|
|
#endif
|
|
}
|
|
_data = _pwmdata; // avoid malloc() and use stack
|
|
_valid = true;
|
|
}
|
|
|
|
void BusPwm::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (pix != 0 || !_valid) return; //only react to first pixel
|
|
if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
|
|
if (_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
|
|
c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
|
|
}
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
uint8_t w = W(c);
|
|
uint8_t cct = 0; //0 - full warm white, 255 - full cold white
|
|
if (_cct > -1) {
|
|
if (_cct >= 1900) cct = (_cct - 1900) >> 5;
|
|
else if (_cct < 256) cct = _cct;
|
|
} else {
|
|
cct = (approximateKelvinFromRGB(c) - 1900) >> 5;
|
|
}
|
|
|
|
uint8_t ww, cw;
|
|
#ifdef WLED_USE_IC_CCT
|
|
ww = w;
|
|
cw = cct;
|
|
#else
|
|
//0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold)
|
|
if (cct < _cctBlend) ww = 255;
|
|
else ww = ((255-cct) * 255) / (255 - _cctBlend);
|
|
|
|
if ((255-cct) < _cctBlend) cw = 255;
|
|
else cw = (cct * 255) / (255 - _cctBlend);
|
|
|
|
ww = (w * ww) / 255; //brightness scaling
|
|
cw = (w * cw) / 255;
|
|
#endif
|
|
|
|
switch (_type) {
|
|
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
|
|
_data[0] = w;
|
|
break;
|
|
case TYPE_ANALOG_2CH: //warm white + cold white
|
|
_data[1] = cw;
|
|
_data[0] = ww;
|
|
break;
|
|
case TYPE_ANALOG_5CH: //RGB + warm white + cold white
|
|
_data[4] = cw;
|
|
w = ww;
|
|
case TYPE_ANALOG_4CH: //RGBW
|
|
_data[3] = w;
|
|
case TYPE_ANALOG_3CH: //standard dumb RGB
|
|
_data[0] = r; _data[1] = g; _data[2] = b;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//does no index check
|
|
uint32_t BusPwm::getPixelColor(uint16_t pix) {
|
|
if (!_valid) return 0;
|
|
return RGBW32(_data[0], _data[1], _data[2], _data[3]);
|
|
}
|
|
|
|
void BusPwm::show() {
|
|
if (!_valid) return;
|
|
uint8_t numPins = NUM_PWM_PINS(_type);
|
|
for (uint8_t i = 0; i < numPins; i++) {
|
|
uint8_t scaled = (_data[i] * _bri) / 255;
|
|
if (_reversed) scaled = 255 - scaled;
|
|
#ifdef ESP8266
|
|
analogWrite(_pins[i], scaled);
|
|
#else
|
|
ledcWrite(_ledcStart + i, scaled);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
uint8_t BusPwm::getPins(uint8_t* pinArray) {
|
|
if (!_valid) return 0;
|
|
uint8_t numPins = NUM_PWM_PINS(_type);
|
|
for (uint8_t i = 0; i < numPins; i++) {
|
|
pinArray[i] = _pins[i];
|
|
}
|
|
return numPins;
|
|
}
|
|
|
|
void BusPwm::deallocatePins() {
|
|
uint8_t numPins = NUM_PWM_PINS(_type);
|
|
for (uint8_t i = 0; i < numPins; i++) {
|
|
pinManager.deallocatePin(_pins[i], PinOwner::BusPwm);
|
|
if (!pinManager.isPinOk(_pins[i])) continue;
|
|
#ifdef ESP8266
|
|
digitalWrite(_pins[i], LOW); //turn off PWM interrupt
|
|
#else
|
|
if (_ledcStart < 16) ledcDetachPin(_pins[i]);
|
|
#endif
|
|
}
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
pinManager.deallocateLedc(_ledcStart, numPins);
|
|
#endif
|
|
}
|
|
|
|
|
|
BusOnOff::BusOnOff(BusConfig &bc)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, 1, bc.reversed)
|
|
, _onoffdata(0)
|
|
{
|
|
if (bc.type != TYPE_ONOFF) return;
|
|
|
|
uint8_t currentPin = bc.pins[0];
|
|
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusOnOff)) {
|
|
return;
|
|
}
|
|
_pin = currentPin; //store only after allocatePin() succeeds
|
|
pinMode(_pin, OUTPUT);
|
|
_data = &_onoffdata; // avoid malloc() and use stack
|
|
_valid = true;
|
|
}
|
|
|
|
void BusOnOff::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (pix != 0 || !_valid) return; //only react to first pixel
|
|
c = autoWhiteCalc(c);
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
uint8_t w = W(c);
|
|
_data[0] = bool(r|g|b|w) && bool(_bri) ? 0xFF : 0;
|
|
}
|
|
|
|
uint32_t BusOnOff::getPixelColor(uint16_t pix) {
|
|
if (!_valid) return 0;
|
|
return RGBW32(_data[0], _data[0], _data[0], _data[0]);
|
|
}
|
|
|
|
void BusOnOff::show() {
|
|
if (!_valid) return;
|
|
digitalWrite(_pin, _reversed ? !(bool)_data[0] : (bool)_data[0]);
|
|
}
|
|
|
|
uint8_t BusOnOff::getPins(uint8_t* pinArray) {
|
|
if (!_valid) return 0;
|
|
pinArray[0] = _pin;
|
|
return 1;
|
|
}
|
|
|
|
|
|
BusNetwork::BusNetwork(BusConfig &bc)
|
|
: Bus(bc.type, bc.start, bc.autoWhite, bc.count)
|
|
, _broadcastLock(false)
|
|
{
|
|
switch (bc.type) {
|
|
case TYPE_NET_ARTNET_RGB:
|
|
_rgbw = false;
|
|
_UDPtype = 2;
|
|
break;
|
|
case TYPE_NET_E131_RGB:
|
|
_rgbw = false;
|
|
_UDPtype = 1;
|
|
break;
|
|
default: // TYPE_NET_DDP_RGB / TYPE_NET_DDP_RGBW
|
|
_rgbw = bc.type == TYPE_NET_DDP_RGBW;
|
|
_UDPtype = 0;
|
|
break;
|
|
}
|
|
_UDPchannels = _rgbw ? 4 : 3;
|
|
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
|
|
_valid = (allocData(_len * _UDPchannels) != nullptr);
|
|
}
|
|
|
|
void BusNetwork::setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (!_valid || pix >= _len) return;
|
|
if (_rgbw) c = autoWhiteCalc(c);
|
|
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
|
|
uint16_t offset = pix * _UDPchannels;
|
|
_data[offset] = R(c);
|
|
_data[offset+1] = G(c);
|
|
_data[offset+2] = B(c);
|
|
if (_rgbw) _data[offset+3] = W(c);
|
|
}
|
|
|
|
uint32_t BusNetwork::getPixelColor(uint16_t pix) {
|
|
if (!_valid || pix >= _len) return 0;
|
|
uint16_t offset = pix * _UDPchannels;
|
|
return RGBW32(_data[offset], _data[offset+1], _data[offset+2], (_rgbw ? _data[offset+3] : 0));
|
|
}
|
|
|
|
void BusNetwork::show() {
|
|
if (!_valid || !canShow()) return;
|
|
_broadcastLock = true;
|
|
realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw);
|
|
_broadcastLock = false;
|
|
}
|
|
|
|
uint8_t BusNetwork::getPins(uint8_t* pinArray) {
|
|
for (uint8_t i = 0; i < 4; i++) {
|
|
pinArray[i] = _client[i];
|
|
}
|
|
return 4;
|
|
}
|
|
|
|
void BusNetwork::cleanup() {
|
|
_type = I_NONE;
|
|
_valid = false;
|
|
freeData();
|
|
}
|
|
|
|
|
|
//utility to get the approx. memory usage of a given BusConfig
|
|
uint32_t BusManager::memUsage(BusConfig &bc) {
|
|
uint8_t type = bc.type;
|
|
uint16_t len = bc.count + bc.skipAmount;
|
|
if (type > 15 && type < 32) { // digital types
|
|
if (type == TYPE_UCS8903 || type == TYPE_UCS8904) len *= 2; // 16-bit LEDs
|
|
#ifdef ESP8266
|
|
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
|
|
if (type > 28) return len*20; //RGBW
|
|
return len*15;
|
|
}
|
|
if (type > 28) return len*4; //RGBW
|
|
return len*3;
|
|
#else //ESP32 RMT uses double buffer?
|
|
if (type > 28) return len*8; //RGBW
|
|
return len*6;
|
|
#endif
|
|
}
|
|
if (type > 31 && type < 48) return 5;
|
|
return len*3; //RGB
|
|
}
|
|
|
|
int BusManager::add(BusConfig &bc) {
|
|
if (getNumBusses() - getNumVirtualBusses() >= WLED_MAX_BUSSES) return -1;
|
|
if (bc.type >= TYPE_NET_DDP_RGB && bc.type < 96) {
|
|
busses[numBusses] = new BusNetwork(bc);
|
|
} else if (IS_DIGITAL(bc.type)) {
|
|
busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
|
|
} else if (bc.type == TYPE_ONOFF) {
|
|
busses[numBusses] = new BusOnOff(bc);
|
|
} else {
|
|
busses[numBusses] = new BusPwm(bc);
|
|
}
|
|
return numBusses++;
|
|
}
|
|
|
|
//do not call this method from system context (network callback)
|
|
void BusManager::removeAll() {
|
|
DEBUG_PRINTLN(F("Removing all."));
|
|
//prevents crashes due to deleting busses while in use.
|
|
while (!canAllShow()) yield();
|
|
for (uint8_t i = 0; i < numBusses; i++) delete busses[i];
|
|
numBusses = 0;
|
|
}
|
|
|
|
void BusManager::show() {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
busses[i]->show();
|
|
}
|
|
}
|
|
|
|
void BusManager::setStatusPixel(uint32_t c) {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
busses[i]->setStatusPixel(c);
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR BusManager::setPixelColor(uint16_t pix, uint32_t c) {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
Bus* b = busses[i];
|
|
uint16_t bstart = b->getStart();
|
|
if (pix < bstart || pix >= bstart + b->getLength()) continue;
|
|
busses[i]->setPixelColor(pix - bstart, c);
|
|
}
|
|
}
|
|
|
|
void BusManager::setBrightness(uint8_t b) {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
busses[i]->setBrightness(b);
|
|
}
|
|
}
|
|
|
|
void BusManager::setSegmentCCT(int16_t cct, bool allowWBCorrection) {
|
|
if (cct > 255) cct = 255;
|
|
if (cct >= 0) {
|
|
//if white balance correction allowed, save as kelvin value instead of 0-255
|
|
if (allowWBCorrection) cct = 1900 + (cct << 5);
|
|
} else cct = -1;
|
|
Bus::setCCT(cct);
|
|
}
|
|
|
|
uint32_t BusManager::getPixelColor(uint16_t pix) {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
Bus* b = busses[i];
|
|
uint16_t bstart = b->getStart();
|
|
if (pix < bstart || pix >= bstart + b->getLength()) continue;
|
|
return b->getPixelColor(pix - bstart);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool BusManager::canAllShow() {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
if (!busses[i]->canShow()) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Bus* BusManager::getBus(uint8_t busNr) {
|
|
if (busNr >= numBusses) return nullptr;
|
|
return busses[busNr];
|
|
}
|
|
|
|
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
|
|
uint16_t BusManager::getTotalLength() {
|
|
uint16_t len = 0;
|
|
for (uint8_t i=0; i<numBusses; i++) len += busses[i]->getLength();
|
|
return len;
|
|
}
|
|
|
|
// Bus static member definition
|
|
int16_t Bus::_cct = -1;
|
|
uint8_t Bus::_cctBlend = 0;
|
|
uint8_t Bus::_gAWM = 255;
|