fb19f1ecbc
* Overridable color order - Use `ColorOrderMap` to hold optional color order overrides for ranges of LEDs. - Serialization of config to/from filesystem is complete. - Back-end configuration is complete. - TODO: front-end changes to the LED settings page. * Add Color order override settings - Adds color order override section to settings page. * PR Feedback - Limit max number of color order overrides to 5 on ESP8266 - Only append color overrides if they were provided in the POST of LED settings.
714 lines
20 KiB
C++
714 lines
20 KiB
C++
#ifndef BusManager_h
|
|
#define BusManager_h
|
|
|
|
/*
|
|
* Class for addressing various light types
|
|
*/
|
|
|
|
#include "const.h"
|
|
#include "pin_manager.h"
|
|
#include "bus_wrapper.h"
|
|
#include <Arduino.h>
|
|
|
|
//colors.cpp
|
|
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb);
|
|
void colorRGBtoRGBW(byte* rgb);
|
|
|
|
// enable additional debug output
|
|
#ifdef WLED_DEBUG
|
|
#ifndef ESP8266
|
|
#include <rom/rtc.h>
|
|
#endif
|
|
#define DEBUG_PRINT(x) Serial.print(x)
|
|
#define DEBUG_PRINTLN(x) Serial.println(x)
|
|
#define DEBUG_PRINTF(x...) Serial.printf(x)
|
|
#else
|
|
#define DEBUG_PRINT(x)
|
|
#define DEBUG_PRINTLN(x)
|
|
#define DEBUG_PRINTF(x...)
|
|
#endif
|
|
|
|
#define GET_BIT(var,bit) (((var)>>(bit))&0x01)
|
|
#define SET_BIT(var,bit) ((var)|=(uint16_t)(0x0001<<(bit)))
|
|
#define UNSET_BIT(var,bit) ((var)&=(~(uint16_t)(0x0001<<(bit))))
|
|
|
|
//color mangling macros
|
|
#define RGBW32(r,g,b,w) (uint32_t((byte(w) << 24) | (byte(r) << 16) | (byte(g) << 8) | (byte(b))))
|
|
#define R(c) (byte((c) >> 16))
|
|
#define G(c) (byte((c) >> 8))
|
|
#define B(c) (byte(c))
|
|
#define W(c) (byte((c) >> 24))
|
|
|
|
//temporary struct for passing bus configuration to bus
|
|
struct BusConfig {
|
|
uint8_t type = TYPE_WS2812_RGB;
|
|
uint16_t count;
|
|
uint16_t start;
|
|
uint8_t colorOrder;
|
|
bool reversed;
|
|
uint8_t skipAmount;
|
|
bool refreshReq;
|
|
uint8_t pins[5] = {LEDPIN, 255, 255, 255, 255};
|
|
BusConfig(uint8_t busType, uint8_t* ppins, uint16_t pstart, uint16_t len = 1, uint8_t pcolorOrder = COL_ORDER_GRB, bool rev = false, uint8_t skip = 0) {
|
|
refreshReq = (bool) GET_BIT(busType,7);
|
|
type = busType & 0x7F; // bit 7 may be/is hacked to include refresh info (1=refresh in off state, 0=no refresh)
|
|
count = len; start = pstart; colorOrder = pcolorOrder; reversed = rev; skipAmount = skip;
|
|
uint8_t nPins = 1;
|
|
if (type >= TYPE_NET_DDP_RGB && type < 96) nPins = 4; //virtual network bus. 4 "pins" store IP address
|
|
else if (type > 47) nPins = 2;
|
|
else if (type > 40 && type < 46) nPins = NUM_PWM_PINS(type);
|
|
for (uint8_t i = 0; i < nPins; i++) pins[i] = ppins[i];
|
|
}
|
|
|
|
//validates start and length and extends total if needed
|
|
bool adjustBounds(uint16_t& total) {
|
|
if (!count) count = 1;
|
|
if (count > MAX_LEDS_PER_BUS) count = MAX_LEDS_PER_BUS;
|
|
if (start >= MAX_LEDS) return false;
|
|
//limit length of strip if it would exceed total permissible LEDs
|
|
if (start + count > MAX_LEDS) count = MAX_LEDS - start;
|
|
//extend total count accordingly
|
|
if (start + count > total) total = start + count;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// Defines an LED Strip and its color ordering.
|
|
struct ColorOrderMapEntry {
|
|
uint16_t start;
|
|
uint16_t len;
|
|
uint8_t colorOrder;
|
|
};
|
|
|
|
struct ColorOrderMap {
|
|
void add(uint16_t start, uint16_t len, uint8_t colorOrder) {
|
|
if (_count >= WLED_MAX_COLOR_ORDER_MAPPINGS) {
|
|
return;
|
|
}
|
|
if (len == 0) {
|
|
return;
|
|
}
|
|
if (colorOrder > COL_ORDER_MAX) {
|
|
return;
|
|
}
|
|
_mappings[_count].start = start;
|
|
_mappings[_count].len = len;
|
|
_mappings[_count].colorOrder = colorOrder;
|
|
_count++;
|
|
}
|
|
|
|
uint8_t count() const {
|
|
return _count;
|
|
}
|
|
|
|
void reset() {
|
|
_count = 0;
|
|
memset(_mappings, 0, sizeof(_mappings));
|
|
}
|
|
|
|
const ColorOrderMapEntry* get(uint8_t n) const {
|
|
if (n > _count) {
|
|
return nullptr;
|
|
}
|
|
return &(_mappings[n]);
|
|
}
|
|
|
|
inline uint8_t getPixelColorOrder(uint16_t pix, uint8_t defaultColorOrder) const {
|
|
if (_count == 0) return defaultColorOrder;
|
|
|
|
for (uint8_t i = 0; i < _count; i++) {
|
|
if (pix >= _mappings[i].start && pix < (_mappings[i].start + _mappings[i].len)) {
|
|
return _mappings[i].colorOrder;
|
|
}
|
|
}
|
|
return defaultColorOrder;
|
|
}
|
|
|
|
private:
|
|
uint8_t _count;
|
|
ColorOrderMapEntry _mappings[WLED_MAX_COLOR_ORDER_MAPPINGS];
|
|
};
|
|
|
|
//parent class of BusDigital, BusPwm, and BusNetwork
|
|
class Bus {
|
|
public:
|
|
Bus(uint8_t type, uint16_t start) {
|
|
_type = type;
|
|
_start = start;
|
|
};
|
|
|
|
virtual ~Bus() {} //throw the bus under the bus
|
|
|
|
virtual void show() {}
|
|
virtual bool canShow() { return true; }
|
|
virtual void setStatusPixel(uint32_t c) {}
|
|
virtual void setPixelColor(uint16_t pix, uint32_t c) {}
|
|
virtual uint32_t getPixelColor(uint16_t pix) { return 0; }
|
|
virtual void setBrightness(uint8_t b) {}
|
|
virtual void cleanup() {}
|
|
virtual uint8_t getPins(uint8_t* pinArray) { return 0; }
|
|
virtual uint16_t getLength() { return _len; }
|
|
virtual void setColorOrder() {}
|
|
virtual uint8_t getColorOrder() { return COL_ORDER_RGB; }
|
|
virtual uint8_t skippedLeds() { return 0; }
|
|
inline uint16_t getStart() { return _start; }
|
|
inline void setStart(uint16_t start) { _start = start; }
|
|
inline uint8_t getType() { return _type; }
|
|
inline bool isOk() { return _valid; }
|
|
inline bool isOffRefreshRequired() { return _needsRefresh; }
|
|
bool containsPixel(uint16_t pix) { return pix >= _start && pix < _start+_len; }
|
|
|
|
virtual bool isRgbw() { return Bus::isRgbw(_type); }
|
|
static bool isRgbw(uint8_t type) {
|
|
if (type == TYPE_SK6812_RGBW || type == TYPE_TM1814) return true;
|
|
if (type > TYPE_ONOFF && type <= TYPE_ANALOG_5CH && type != TYPE_ANALOG_3CH) return true;
|
|
return false;
|
|
}
|
|
static void setCCT(uint16_t cct) {
|
|
_cct = cct;
|
|
}
|
|
static void setCCTBlend(uint8_t b) {
|
|
if (b > 100) b = 100;
|
|
_cctBlend = (b * 127) / 100;
|
|
//compile-time limiter for hardware that can't power both white channels at max
|
|
#ifdef WLED_MAX_CCT_BLEND
|
|
if (_cctBlend > WLED_MAX_CCT_BLEND) _cctBlend = WLED_MAX_CCT_BLEND;
|
|
#endif
|
|
}
|
|
inline static void setAutoWhiteMode(uint8_t m) { if (m < 4) _autoWhiteMode = m; }
|
|
inline static uint8_t getAutoWhiteMode() { return _autoWhiteMode; }
|
|
|
|
bool reversed = false;
|
|
|
|
protected:
|
|
uint8_t _type = TYPE_NONE;
|
|
uint8_t _bri = 255;
|
|
uint16_t _start = 0;
|
|
uint16_t _len = 1;
|
|
bool _valid = false;
|
|
bool _needsRefresh = false;
|
|
static uint8_t _autoWhiteMode;
|
|
static int16_t _cct;
|
|
static uint8_t _cctBlend;
|
|
|
|
uint32_t autoWhiteCalc(uint32_t c) {
|
|
if (_autoWhiteMode == RGBW_MODE_MANUAL_ONLY) return c;
|
|
uint8_t w = W(c);
|
|
//ignore auto-white calculation if w>0 and mode DUAL (DUAL behaves as BRIGHTER if w==0)
|
|
if (w > 0 && _autoWhiteMode == RGBW_MODE_DUAL) return c;
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
w = r < g ? (r < b ? r : b) : (g < b ? g : b);
|
|
if (_autoWhiteMode == RGBW_MODE_AUTO_ACCURATE) { r -= w; g -= w; b -= w; } //subtract w in ACCURATE mode
|
|
return RGBW32(r, g, b, w);
|
|
}
|
|
};
|
|
|
|
|
|
class BusDigital : public Bus {
|
|
public:
|
|
BusDigital(BusConfig &bc, uint8_t nr, const ColorOrderMap &com) : Bus(bc.type, bc.start), _colorOrderMap(com) {
|
|
if (!IS_DIGITAL(bc.type) || !bc.count) return;
|
|
if (!pinManager.allocatePin(bc.pins[0], true, PinOwner::BusDigital)) return;
|
|
_pins[0] = bc.pins[0];
|
|
if (IS_2PIN(bc.type)) {
|
|
if (!pinManager.allocatePin(bc.pins[1], true, PinOwner::BusDigital)) {
|
|
cleanup(); return;
|
|
}
|
|
_pins[1] = bc.pins[1];
|
|
}
|
|
reversed = bc.reversed;
|
|
_needsRefresh = bc.refreshReq || bc.type == TYPE_TM1814;
|
|
_skip = bc.skipAmount; //sacrificial pixels
|
|
_len = bc.count + _skip;
|
|
_iType = PolyBus::getI(bc.type, _pins, nr);
|
|
if (_iType == I_NONE) return;
|
|
_busPtr = PolyBus::create(_iType, _pins, _len, nr);
|
|
_valid = (_busPtr != nullptr);
|
|
_colorOrder = bc.colorOrder;
|
|
DEBUG_PRINTF("Successfully inited strip %u (len %u) with type %u and pins %u,%u (itype %u)\n",nr, _len, bc.type, _pins[0],_pins[1],_iType);
|
|
};
|
|
|
|
inline void show() {
|
|
PolyBus::show(_busPtr, _iType);
|
|
}
|
|
|
|
inline bool canShow() {
|
|
return PolyBus::canShow(_busPtr, _iType);
|
|
}
|
|
|
|
void setBrightness(uint8_t b) {
|
|
//Fix for turning off onboard LED breaking bus
|
|
#ifdef LED_BUILTIN
|
|
if (_bri == 0 && b > 0) {
|
|
if (_pins[0] == LED_BUILTIN || _pins[1] == LED_BUILTIN) PolyBus::begin(_busPtr, _iType, _pins);
|
|
}
|
|
#endif
|
|
_bri = b;
|
|
PolyBus::setBrightness(_busPtr, _iType, b);
|
|
}
|
|
|
|
//If LEDs are skipped, it is possible to use the first as a status LED.
|
|
//TODO only show if no new show due in the next 50ms
|
|
void setStatusPixel(uint32_t c) {
|
|
if (_skip && canShow()) {
|
|
PolyBus::setPixelColor(_busPtr, _iType, 0, c, _colorOrderMap.getPixelColorOrder(_start, _colorOrder));
|
|
PolyBus::show(_busPtr, _iType);
|
|
}
|
|
}
|
|
|
|
void setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (_type == TYPE_SK6812_RGBW || _type == TYPE_TM1814) c = autoWhiteCalc(c);
|
|
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
|
|
if (reversed) pix = _len - pix -1;
|
|
else pix += _skip;
|
|
PolyBus::setPixelColor(_busPtr, _iType, pix, c, _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder));
|
|
}
|
|
|
|
uint32_t getPixelColor(uint16_t pix) {
|
|
if (reversed) pix = _len - pix -1;
|
|
else pix += _skip;
|
|
return PolyBus::getPixelColor(_busPtr, _iType, pix, _colorOrderMap.getPixelColorOrder(pix+_start, _colorOrder));
|
|
}
|
|
|
|
inline uint8_t getColorOrder() {
|
|
return _colorOrder;
|
|
}
|
|
|
|
uint16_t getLength() {
|
|
return _len - _skip;
|
|
}
|
|
|
|
uint8_t getPins(uint8_t* pinArray) {
|
|
uint8_t numPins = IS_2PIN(_type) ? 2 : 1;
|
|
for (uint8_t i = 0; i < numPins; i++) pinArray[i] = _pins[i];
|
|
return numPins;
|
|
}
|
|
|
|
void setColorOrder(uint8_t colorOrder) {
|
|
if (colorOrder > 5) return;
|
|
_colorOrder = colorOrder;
|
|
}
|
|
|
|
inline uint8_t skippedLeds() {
|
|
return _skip;
|
|
}
|
|
|
|
inline void reinit() {
|
|
PolyBus::begin(_busPtr, _iType, _pins);
|
|
}
|
|
|
|
void cleanup() {
|
|
DEBUG_PRINTLN(F("Digital Cleanup."));
|
|
PolyBus::cleanup(_busPtr, _iType);
|
|
_iType = I_NONE;
|
|
_valid = false;
|
|
_busPtr = nullptr;
|
|
pinManager.deallocatePin(_pins[1], PinOwner::BusDigital);
|
|
pinManager.deallocatePin(_pins[0], PinOwner::BusDigital);
|
|
}
|
|
|
|
~BusDigital() {
|
|
cleanup();
|
|
}
|
|
|
|
private:
|
|
uint8_t _colorOrder = COL_ORDER_GRB;
|
|
uint8_t _pins[2] = {255, 255};
|
|
uint8_t _iType = I_NONE;
|
|
uint8_t _skip = 0;
|
|
void * _busPtr = nullptr;
|
|
const ColorOrderMap &_colorOrderMap;
|
|
};
|
|
|
|
|
|
class BusPwm : public Bus {
|
|
public:
|
|
BusPwm(BusConfig &bc) : Bus(bc.type, bc.start) {
|
|
_valid = false;
|
|
if (!IS_PWM(bc.type)) return;
|
|
uint8_t numPins = NUM_PWM_PINS(bc.type);
|
|
|
|
#ifdef ESP8266
|
|
analogWriteRange(255); //same range as one RGB channel
|
|
analogWriteFreq(WLED_PWM_FREQ);
|
|
#else
|
|
_ledcStart = pinManager.allocateLedc(numPins);
|
|
if (_ledcStart == 255) { //no more free LEDC channels
|
|
deallocatePins(); return;
|
|
}
|
|
#endif
|
|
|
|
for (uint8_t i = 0; i < numPins; i++) {
|
|
uint8_t currentPin = bc.pins[i];
|
|
if (!pinManager.allocatePin(currentPin, true, PinOwner::BusPwm)) {
|
|
deallocatePins(); return;
|
|
}
|
|
_pins[i] = currentPin; //store only after allocatePin() succeeds
|
|
#ifdef ESP8266
|
|
pinMode(_pins[i], OUTPUT);
|
|
#else
|
|
ledcSetup(_ledcStart + i, WLED_PWM_FREQ, 8);
|
|
ledcAttachPin(_pins[i], _ledcStart + i);
|
|
#endif
|
|
}
|
|
reversed = bc.reversed;
|
|
_valid = true;
|
|
};
|
|
|
|
void setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (pix != 0 || !_valid) return; //only react to first pixel
|
|
if (_type != TYPE_ANALOG_3CH) c = autoWhiteCalc(c);
|
|
if (_cct >= 1900 && (_type == TYPE_ANALOG_3CH || _type == TYPE_ANALOG_4CH)) {
|
|
c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
|
|
}
|
|
uint8_t r = R(c);
|
|
uint8_t g = G(c);
|
|
uint8_t b = B(c);
|
|
uint8_t w = W(c);
|
|
uint8_t cct = 0; //0 - full warm white, 255 - full cold white
|
|
if (_cct > -1) {
|
|
if (_cct >= 1900) cct = (_cct - 1900) >> 5;
|
|
else if (_cct < 256) cct = _cct;
|
|
} else {
|
|
cct = (approximateKelvinFromRGB(c) - 1900) >> 5;
|
|
}
|
|
|
|
uint8_t ww, cw;
|
|
#ifdef WLED_USE_IC_CCT
|
|
ww = w;
|
|
cw = cct;
|
|
#else
|
|
//0 - linear (CCT 127 = 50% warm, 50% cold), 127 - additive CCT blending (CCT 127 = 100% warm, 100% cold)
|
|
if (cct < _cctBlend) ww = 255;
|
|
else ww = ((255-cct) * 255) / (255 - _cctBlend);
|
|
|
|
if ((255-cct) < _cctBlend) cw = 255;
|
|
else cw = (cct * 255) / (255 - _cctBlend);
|
|
|
|
ww = (w * ww) / 255; //brightness scaling
|
|
cw = (w * cw) / 255;
|
|
#endif
|
|
|
|
switch (_type) {
|
|
case TYPE_ANALOG_1CH: //one channel (white), relies on auto white calculation
|
|
_data[0] = w;
|
|
break;
|
|
case TYPE_ANALOG_2CH: //warm white + cold white
|
|
_data[1] = cw;
|
|
_data[0] = ww;
|
|
break;
|
|
case TYPE_ANALOG_5CH: //RGB + warm white + cold white
|
|
// perhaps a non-linear adjustment would be in order. need to test
|
|
_data[4] = cw;
|
|
w = ww;
|
|
case TYPE_ANALOG_4CH: //RGBW
|
|
_data[3] = w;
|
|
case TYPE_ANALOG_3CH: //standard dumb RGB
|
|
_data[0] = r; _data[1] = g; _data[2] = b;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//does no index check
|
|
uint32_t getPixelColor(uint16_t pix) {
|
|
if (!_valid) return 0;
|
|
return RGBW32(_data[0], _data[1], _data[2], _data[3]);
|
|
}
|
|
|
|
void show() {
|
|
if (!_valid) return;
|
|
uint8_t numPins = NUM_PWM_PINS(_type);
|
|
for (uint8_t i = 0; i < numPins; i++) {
|
|
uint8_t scaled = (_data[i] * _bri) / 255;
|
|
if (reversed) scaled = 255 - scaled;
|
|
#ifdef ESP8266
|
|
analogWrite(_pins[i], scaled);
|
|
#else
|
|
ledcWrite(_ledcStart + i, scaled);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
inline void setBrightness(uint8_t b) {
|
|
_bri = b;
|
|
}
|
|
|
|
uint8_t getPins(uint8_t* pinArray) {
|
|
if (!_valid) return 0;
|
|
uint8_t numPins = NUM_PWM_PINS(_type);
|
|
for (uint8_t i = 0; i < numPins; i++) {
|
|
pinArray[i] = _pins[i];
|
|
}
|
|
return numPins;
|
|
}
|
|
|
|
inline void cleanup() {
|
|
deallocatePins();
|
|
}
|
|
|
|
~BusPwm() {
|
|
cleanup();
|
|
}
|
|
|
|
private:
|
|
uint8_t _pins[5] = {255, 255, 255, 255, 255};
|
|
uint8_t _data[5] = {0};
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
uint8_t _ledcStart = 255;
|
|
#endif
|
|
|
|
void deallocatePins() {
|
|
uint8_t numPins = NUM_PWM_PINS(_type);
|
|
for (uint8_t i = 0; i < numPins; i++) {
|
|
pinManager.deallocatePin(_pins[i], PinOwner::BusPwm);
|
|
if (!pinManager.isPinOk(_pins[i])) continue;
|
|
#ifdef ESP8266
|
|
digitalWrite(_pins[i], LOW); //turn off PWM interrupt
|
|
#else
|
|
if (_ledcStart < 16) ledcDetachPin(_pins[i]);
|
|
#endif
|
|
}
|
|
#ifdef ARDUINO_ARCH_ESP32
|
|
pinManager.deallocateLedc(_ledcStart, numPins);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
|
|
class BusNetwork : public Bus {
|
|
public:
|
|
BusNetwork(BusConfig &bc) : Bus(bc.type, bc.start) {
|
|
_valid = false;
|
|
// switch (bc.type) {
|
|
// case TYPE_NET_ARTNET_RGB:
|
|
// _rgbw = false;
|
|
// _UDPtype = 2;
|
|
// break;
|
|
// case TYPE_NET_E131_RGB:
|
|
// _rgbw = false;
|
|
// _UDPtype = 1;
|
|
// break;
|
|
// case TYPE_NET_DDP_RGB:
|
|
// _rgbw = false;
|
|
// _UDPtype = 0;
|
|
// break;
|
|
// default:
|
|
_rgbw = false;
|
|
_UDPtype = bc.type - TYPE_NET_DDP_RGB;
|
|
// break;
|
|
// }
|
|
_UDPchannels = _rgbw ? 4 : 3;
|
|
_data = (byte *)malloc(bc.count * _UDPchannels);
|
|
if (_data == nullptr) return;
|
|
memset(_data, 0, bc.count * _UDPchannels);
|
|
_len = bc.count;
|
|
_client = IPAddress(bc.pins[0],bc.pins[1],bc.pins[2],bc.pins[3]);
|
|
_broadcastLock = false;
|
|
_valid = true;
|
|
};
|
|
|
|
void setPixelColor(uint16_t pix, uint32_t c) {
|
|
if (!_valid || pix >= _len) return;
|
|
if (isRgbw()) c = autoWhiteCalc(c);
|
|
if (_cct >= 1900) c = colorBalanceFromKelvin(_cct, c); //color correction from CCT
|
|
uint16_t offset = pix * _UDPchannels;
|
|
_data[offset] = R(c);
|
|
_data[offset+1] = G(c);
|
|
_data[offset+2] = B(c);
|
|
if (_rgbw) _data[offset+3] = W(c);
|
|
}
|
|
|
|
uint32_t getPixelColor(uint16_t pix) {
|
|
if (!_valid || pix >= _len) return 0;
|
|
uint16_t offset = pix * _UDPchannels;
|
|
return RGBW32(_data[offset], _data[offset+1], _data[offset+2], _rgbw ? (_data[offset+3] << 24) : 0);
|
|
}
|
|
|
|
void show() {
|
|
if (!_valid || !canShow()) return;
|
|
_broadcastLock = true;
|
|
realtimeBroadcast(_UDPtype, _client, _len, _data, _bri, _rgbw);
|
|
_broadcastLock = false;
|
|
}
|
|
|
|
inline bool canShow() {
|
|
// this should be a return value from UDP routine if it is still sending data out
|
|
return !_broadcastLock;
|
|
}
|
|
|
|
inline void setBrightness(uint8_t b) {
|
|
_bri = b;
|
|
}
|
|
|
|
uint8_t getPins(uint8_t* pinArray) {
|
|
for (uint8_t i = 0; i < 4; i++) {
|
|
pinArray[i] = _client[i];
|
|
}
|
|
return 4;
|
|
}
|
|
|
|
inline bool isRgbw() {
|
|
return _rgbw;
|
|
}
|
|
|
|
inline uint16_t getLength() {
|
|
return _len;
|
|
}
|
|
|
|
void cleanup() {
|
|
_type = I_NONE;
|
|
_valid = false;
|
|
if (_data != nullptr) free(_data);
|
|
_data = nullptr;
|
|
}
|
|
|
|
~BusNetwork() {
|
|
cleanup();
|
|
}
|
|
|
|
private:
|
|
IPAddress _client;
|
|
uint8_t _bri = 255;
|
|
uint8_t _UDPtype;
|
|
uint8_t _UDPchannels;
|
|
bool _rgbw;
|
|
bool _broadcastLock;
|
|
byte *_data;
|
|
};
|
|
|
|
|
|
class BusManager {
|
|
public:
|
|
BusManager() {
|
|
|
|
};
|
|
|
|
//utility to get the approx. memory usage of a given BusConfig
|
|
static uint32_t memUsage(BusConfig &bc) {
|
|
uint8_t type = bc.type;
|
|
uint16_t len = bc.count;
|
|
if (type > 15 && type < 32) {
|
|
#ifdef ESP8266
|
|
if (bc.pins[0] == 3) { //8266 DMA uses 5x the mem
|
|
if (type > 29) return len*20; //RGBW
|
|
return len*15;
|
|
}
|
|
if (type > 29) return len*4; //RGBW
|
|
return len*3;
|
|
#else //ESP32 RMT uses double buffer?
|
|
if (type > 29) return len*8; //RGBW
|
|
return len*6;
|
|
#endif
|
|
}
|
|
if (type > 31 && type < 48) return 5;
|
|
if (type == 44 || type == 45) return len*4; //RGBW
|
|
return len*3; //RGB
|
|
}
|
|
|
|
int add(BusConfig &bc) {
|
|
if (numBusses >= WLED_MAX_BUSSES) return -1;
|
|
if (bc.type >= TYPE_NET_DDP_RGB && bc.type < 96) {
|
|
busses[numBusses] = new BusNetwork(bc);
|
|
} else if (IS_DIGITAL(bc.type)) {
|
|
busses[numBusses] = new BusDigital(bc, numBusses, colorOrderMap);
|
|
} else {
|
|
busses[numBusses] = new BusPwm(bc);
|
|
}
|
|
return numBusses++;
|
|
}
|
|
|
|
//do not call this method from system context (network callback)
|
|
void removeAll() {
|
|
DEBUG_PRINTLN(F("Removing all."));
|
|
//prevents crashes due to deleting busses while in use.
|
|
while (!canAllShow()) yield();
|
|
for (uint8_t i = 0; i < numBusses; i++) delete busses[i];
|
|
numBusses = 0;
|
|
}
|
|
|
|
void show() {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
busses[i]->show();
|
|
}
|
|
}
|
|
|
|
void setStatusPixel(uint32_t c) {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
busses[i]->setStatusPixel(c);
|
|
}
|
|
}
|
|
|
|
void setPixelColor(uint16_t pix, uint32_t c, int16_t cct=-1) {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
Bus* b = busses[i];
|
|
uint16_t bstart = b->getStart();
|
|
if (pix < bstart || pix >= bstart + b->getLength()) continue;
|
|
busses[i]->setPixelColor(pix - bstart, c);
|
|
}
|
|
}
|
|
|
|
void setBrightness(uint8_t b) {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
busses[i]->setBrightness(b);
|
|
}
|
|
}
|
|
|
|
void setSegmentCCT(int16_t cct, bool allowWBCorrection = false) {
|
|
if (cct > 255) cct = 255;
|
|
if (cct >= 0) {
|
|
//if white balance correction allowed, save as kelvin value instead of 0-255
|
|
if (allowWBCorrection) cct = 1900 + (cct << 5);
|
|
} else cct = -1;
|
|
Bus::setCCT(cct);
|
|
}
|
|
|
|
uint32_t getPixelColor(uint16_t pix) {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
Bus* b = busses[i];
|
|
uint16_t bstart = b->getStart();
|
|
if (pix < bstart || pix >= bstart + b->getLength()) continue;
|
|
return b->getPixelColor(pix - bstart);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool canAllShow() {
|
|
for (uint8_t i = 0; i < numBusses; i++) {
|
|
if (!busses[i]->canShow()) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Bus* getBus(uint8_t busNr) {
|
|
if (busNr >= numBusses) return nullptr;
|
|
return busses[busNr];
|
|
}
|
|
|
|
inline uint8_t getNumBusses() {
|
|
return numBusses;
|
|
}
|
|
|
|
//semi-duplicate of strip.getLengthTotal() (though that just returns strip._length, calculated in finalizeInit())
|
|
uint16_t getTotalLength() {
|
|
uint16_t len = 0;
|
|
for (uint8_t i=0; i<numBusses; i++) len += busses[i]->getLength();
|
|
return len;
|
|
}
|
|
|
|
void updateColorOrderMap(const ColorOrderMap &com) {
|
|
memcpy(&colorOrderMap, &com, sizeof(ColorOrderMap));
|
|
}
|
|
|
|
const ColorOrderMap& getColorOrderMap() const {
|
|
return colorOrderMap;
|
|
}
|
|
|
|
private:
|
|
uint8_t numBusses = 0;
|
|
Bus* busses[WLED_MAX_BUSSES];
|
|
ColorOrderMap colorOrderMap;
|
|
};
|
|
#endif
|