334 lines
10 KiB
C++
334 lines
10 KiB
C++
#include "src/dependencies/timezone/Timezone.h"
|
|
#include "wled.h"
|
|
|
|
/*
|
|
* Acquires time from NTP server
|
|
*/
|
|
Timezone* tz;
|
|
|
|
#define TZ_UTC 0
|
|
#define TZ_UK 1
|
|
#define TZ_EUROPE_CENTRAL 2
|
|
#define TZ_EUROPE_EASTERN 3
|
|
#define TZ_US_EASTERN 4
|
|
#define TZ_US_CENTRAL 5
|
|
#define TZ_US_MOUNTAIN 6
|
|
#define TZ_US_ARIZONA 7
|
|
#define TZ_US_PACIFIC 8
|
|
#define TZ_CHINA 9
|
|
#define TZ_JAPAN 10
|
|
#define TZ_AUSTRALIA_EASTERN 11
|
|
#define TZ_NEW_ZEALAND 12
|
|
#define TZ_NORTH_KOREA 13
|
|
#define TZ_INDIA 14
|
|
#define TZ_SASKACHEWAN 15
|
|
#define TZ_AUSTRALIA_NORTHERN 16
|
|
#define TZ_AUSTRALIA_SOUTHERN 17
|
|
#define TZ_HAWAII 18
|
|
#define TZ_INIT 255
|
|
|
|
byte tzCurrent = TZ_INIT; //uninitialized
|
|
|
|
void updateTimezone() {
|
|
delete tz;
|
|
TimeChangeRule tcrDaylight = {Last, Sun, Mar, 1, 0}; //UTC
|
|
TimeChangeRule tcrStandard = tcrDaylight; //UTC
|
|
|
|
switch (currentTimezone) {
|
|
case TZ_UK : {
|
|
tcrDaylight = {Last, Sun, Mar, 1, 60}; //British Summer Time
|
|
tcrStandard = {Last, Sun, Oct, 2, 0}; //Standard Time
|
|
break;
|
|
}
|
|
case TZ_EUROPE_CENTRAL : {
|
|
tcrDaylight = {Last, Sun, Mar, 2, 120}; //Central European Summer Time
|
|
tcrStandard = {Last, Sun, Oct, 3, 60}; //Central European Standard Time
|
|
break;
|
|
}
|
|
case TZ_EUROPE_EASTERN : {
|
|
tcrDaylight = {Last, Sun, Mar, 3, 180}; //East European Summer Time
|
|
tcrStandard = {Last, Sun, Oct, 4, 120}; //East European Standard Time
|
|
break;
|
|
}
|
|
case TZ_US_EASTERN : {
|
|
tcrDaylight = {Second, Sun, Mar, 2, -240}; //EDT = UTC - 4 hours
|
|
tcrStandard = {First, Sun, Nov, 2, -300}; //EST = UTC - 5 hours
|
|
break;
|
|
}
|
|
case TZ_US_CENTRAL : {
|
|
tcrDaylight = {Second, Sun, Mar, 2, -300}; //CDT = UTC - 5 hours
|
|
tcrStandard = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours
|
|
break;
|
|
}
|
|
case TZ_US_MOUNTAIN : {
|
|
tcrDaylight = {Second, Sun, Mar, 2, -360}; //MDT = UTC - 6 hours
|
|
tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours
|
|
break;
|
|
}
|
|
case TZ_US_ARIZONA : {
|
|
tcrDaylight = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours
|
|
tcrStandard = {First, Sun, Nov, 2, -420}; //MST = UTC - 7 hours
|
|
break;
|
|
}
|
|
case TZ_US_PACIFIC : {
|
|
tcrDaylight = {Second, Sun, Mar, 2, -420}; //PDT = UTC - 7 hours
|
|
tcrStandard = {First, Sun, Nov, 2, -480}; //PST = UTC - 8 hours
|
|
break;
|
|
}
|
|
case TZ_CHINA : {
|
|
tcrDaylight = {Last, Sun, Mar, 1, 480}; //CST = UTC + 8 hours
|
|
tcrStandard = tcrDaylight;
|
|
break;
|
|
}
|
|
case TZ_JAPAN : {
|
|
tcrDaylight = {Last, Sun, Mar, 1, 540}; //JST = UTC + 9 hours
|
|
tcrStandard = tcrDaylight;
|
|
break;
|
|
}
|
|
case TZ_AUSTRALIA_EASTERN : {
|
|
tcrDaylight = {Second, Sun, Oct, 2, 660}; //AEDT = UTC + 11 hours
|
|
tcrStandard = {First, Sun, Apr, 3, 600}; //AEST = UTC + 10 hours
|
|
break;
|
|
}
|
|
case TZ_NEW_ZEALAND : {
|
|
tcrDaylight = {Second, Sun, Sep, 2, 780}; //NZDT = UTC + 13 hours
|
|
tcrStandard = {First, Sun, Apr, 3, 720}; //NZST = UTC + 12 hours
|
|
break;
|
|
}
|
|
case TZ_NORTH_KOREA : {
|
|
tcrDaylight = {Last, Sun, Mar, 1, 510}; //Pyongyang Time = UTC + 8.5 hours
|
|
tcrStandard = tcrDaylight;
|
|
break;
|
|
}
|
|
case TZ_INDIA : {
|
|
tcrDaylight = {Last, Sun, Mar, 1, 330}; //India Standard Time = UTC + 5.5 hours
|
|
tcrStandard = tcrDaylight;
|
|
break;
|
|
}
|
|
case TZ_SASKACHEWAN : {
|
|
tcrDaylight = {First, Sun, Nov, 2, -360}; //CST = UTC - 6 hours
|
|
tcrStandard = tcrDaylight;
|
|
break;
|
|
}
|
|
case TZ_AUSTRALIA_NORTHERN : {
|
|
tcrStandard = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours
|
|
tcrStandard = tcrDaylight;
|
|
break;
|
|
}
|
|
case TZ_AUSTRALIA_SOUTHERN : {
|
|
tcrDaylight = {First, Sun, Oct, 2, 630}; //ACDT = UTC + 10.5 hours
|
|
tcrStandard = {First, Sun, Apr, 3, 570}; //ACST = UTC + 9.5 hours
|
|
break;
|
|
}
|
|
case TZ_HAWAII : {
|
|
tcrDaylight = {Last, Sun, Mar, 1, -600}; //HST = UTC - 10 hours
|
|
tcrStandard = tcrDaylight;
|
|
break;
|
|
}
|
|
}
|
|
|
|
tzCurrent = currentTimezone;
|
|
|
|
tz = new Timezone(tcrDaylight, tcrStandard);
|
|
}
|
|
|
|
void handleNetworkTime()
|
|
{
|
|
if (ntpEnabled && ntpConnected && millis() - ntpLastSyncTime > 50000000L && WLED_CONNECTED)
|
|
{
|
|
if (millis() - ntpPacketSentTime > 10000)
|
|
{
|
|
sendNTPPacket();
|
|
ntpPacketSentTime = millis();
|
|
}
|
|
if (checkNTPResponse())
|
|
{
|
|
ntpLastSyncTime = millis();
|
|
}
|
|
}
|
|
}
|
|
|
|
void sendNTPPacket()
|
|
{
|
|
if (!ntpServerIP.fromString(ntpServerName)) //see if server is IP or domain
|
|
{
|
|
#ifdef ESP8266
|
|
WiFi.hostByName(ntpServerName, ntpServerIP, 750);
|
|
#else
|
|
WiFi.hostByName(ntpServerName, ntpServerIP);
|
|
#endif
|
|
}
|
|
|
|
DEBUG_PRINTLN(F("send NTP"));
|
|
byte pbuf[NTP_PACKET_SIZE];
|
|
memset(pbuf, 0, NTP_PACKET_SIZE);
|
|
|
|
pbuf[0] = 0b11100011; // LI, Version, Mode
|
|
pbuf[1] = 0; // Stratum, or type of clock
|
|
pbuf[2] = 6; // Polling Interval
|
|
pbuf[3] = 0xEC; // Peer Clock Precision
|
|
// 8 bytes of zero for Root Delay & Root Dispersion
|
|
pbuf[12] = 49;
|
|
pbuf[13] = 0x4E;
|
|
pbuf[14] = 49;
|
|
pbuf[15] = 52;
|
|
|
|
ntpUdp.beginPacket(ntpServerIP, 123); //NTP requests are to port 123
|
|
ntpUdp.write(pbuf, NTP_PACKET_SIZE);
|
|
ntpUdp.endPacket();
|
|
}
|
|
|
|
bool checkNTPResponse()
|
|
{
|
|
int cb = ntpUdp.parsePacket();
|
|
if (cb) {
|
|
DEBUG_PRINT(F("NTP recv, l="));
|
|
DEBUG_PRINTLN(cb);
|
|
byte pbuf[NTP_PACKET_SIZE];
|
|
ntpUdp.read(pbuf, NTP_PACKET_SIZE); // read the packet into the buffer
|
|
|
|
unsigned long highWord = word(pbuf[40], pbuf[41]);
|
|
unsigned long lowWord = word(pbuf[42], pbuf[43]);
|
|
if (highWord == 0 && lowWord == 0) return false;
|
|
|
|
unsigned long secsSince1900 = highWord << 16 | lowWord;
|
|
|
|
DEBUG_PRINT(F("Unix time = "));
|
|
unsigned long epoch = secsSince1900 - 2208988799UL; //subtract 70 years -1sec (on avg. more precision)
|
|
setTime(epoch);
|
|
DEBUG_PRINTLN(epoch);
|
|
if (countdownTime - now() > 0) countdownOverTriggered = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void updateLocalTime()
|
|
{
|
|
if (currentTimezone != tzCurrent) updateTimezone();
|
|
unsigned long tmc = now()+ utcOffsetSecs;
|
|
localTime = tz->toLocal(tmc);
|
|
}
|
|
|
|
void getTimeString(char* out)
|
|
{
|
|
updateLocalTime();
|
|
byte hr = hour(localTime);
|
|
if (useAMPM)
|
|
{
|
|
if (hr > 11) hr -= 12;
|
|
if (hr == 0) hr = 12;
|
|
}
|
|
sprintf(out,"%i-%i-%i, %i:%s%i:%s%i",year(localTime), month(localTime), day(localTime),
|
|
hr,(minute(localTime)<10)?"0":"",minute(localTime),
|
|
(second(localTime)<10)?"0":"",second(localTime));
|
|
if (useAMPM)
|
|
{
|
|
strcat(out,(hour(localTime) > 11)? " PM":" AM");
|
|
}
|
|
}
|
|
|
|
void setCountdown()
|
|
{
|
|
if (currentTimezone != tzCurrent) updateTimezone();
|
|
countdownTime = tz->toUTC(getUnixTime(countdownHour, countdownMin, countdownSec, countdownDay, countdownMonth, countdownYear));
|
|
if (countdownTime - now() > 0) countdownOverTriggered = false;
|
|
}
|
|
|
|
//returns true if countdown just over
|
|
bool checkCountdown()
|
|
{
|
|
unsigned long n = now();
|
|
if (countdownMode) localTime = countdownTime - n + utcOffsetSecs;
|
|
if (n > countdownTime) {
|
|
if (countdownMode) localTime = n - countdownTime + utcOffsetSecs;
|
|
if (!countdownOverTriggered)
|
|
{
|
|
if (macroCountdown != 0) applyPreset(macroCountdown);
|
|
countdownOverTriggered = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
byte weekdayMondayFirst()
|
|
{
|
|
byte wd = weekday(localTime) -1;
|
|
if (wd == 0) wd = 7;
|
|
return wd;
|
|
}
|
|
|
|
void checkTimers()
|
|
{
|
|
if (lastTimerMinute != minute(localTime)) //only check once a new minute begins
|
|
{
|
|
daytime = isDayTime();
|
|
if (prevDaytime != daytime) {
|
|
// sunrise or sunset
|
|
DEBUG_PRINTLN(daytime?F("Sunrise"):F("Sunset"));
|
|
}
|
|
lastTimerMinute = minute(localTime);
|
|
for (uint8_t i = 0; i < 8; i++)
|
|
{
|
|
if (timerMacro[i] != 0
|
|
&& (timerHours[i] == hour(localTime) || timerHours[i] == 24) //if hour is set to 24, activate every hour
|
|
&& timerMinutes[i] == minute(localTime)
|
|
&& (timerWeekday[i] & 0x01) //timer is enabled
|
|
&& timerWeekday[i] >> weekdayMondayFirst() & 0x01) //timer should activate at current day of week
|
|
{
|
|
applyPreset(timerMacro[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This program calculates solar positions as a function of location, date, and time.
|
|
* The equations are from Jean Meeus, Astronomical Algorithms, Willmann-Bell, Inc., Richmond, VA
|
|
* (C) 2015, David Brooks, Institute for Earth Science Research and Education.
|
|
* http://www.instesre.org/ArduinoUnoSolarCalculations.pdf
|
|
*/
|
|
//#define DEG_TO_RAD 0.01745329
|
|
//#define PI 3.141592654
|
|
#define TWOPI 6.28318531
|
|
|
|
long JulianDate(int year, int month, int day) {
|
|
if (month<=2) {
|
|
year--; month+=12;
|
|
}
|
|
int A=year/100;
|
|
int B=2-A+A/4;
|
|
return (long)(365.25*(year + 4716)) + (int)(30.6001*(month + 1)) + day + B - 1524;
|
|
}
|
|
|
|
bool isDayTime() {
|
|
float JD_frac,T,L0,M,C,L_true,GrHrAngle,Obl,RA,Decl,HrAngle,elev;
|
|
long JD_whole,JDx;
|
|
|
|
float Lon = longitude*DEG_TO_RAD;
|
|
float Lat = latitude*DEG_TO_RAD;
|
|
|
|
// calculate elevation of the sun (>0 daytime, <0 nighttime)
|
|
JD_whole = JulianDate(year(localTime), month(localTime), day(localTime));
|
|
JD_frac = (hour(localTime) + minute(localTime)/60. + second(localTime)/3600.)/24. - .5;
|
|
JDx = JD_whole - 2451545;
|
|
T = (JDx + JD_frac)/36525.;
|
|
L0 = DEG_TO_RAD*fmod(280.46645 + 36000.76983*T, 360);
|
|
M = DEG_TO_RAD*fmod(357.5291 + 35999.0503*T, 360);
|
|
C = DEG_TO_RAD*((1.9146-0.004847*T)*sin(M) + (0.019993-0.000101*T)*sin(2*M) + 0.00029*sin(3*M));
|
|
Obl = DEG_TO_RAD*(23 + 26/60. + 21.448/3600. - 46.815/3600*T);
|
|
GrHrAngle = 280.46061837 + (360*JDx)%360 + .98564736629*JDx + 360.98564736629*JD_frac;
|
|
GrHrAngle = fmod(GrHrAngle, 360.);
|
|
L_true = fmod(C + L0, TWOPI);
|
|
RA = atan2(sin(L_true)*cos(Obl), cos(L_true));
|
|
Decl = asin(sin(Obl)*sin(L_true));
|
|
HrAngle = DEG_TO_RAD*GrHrAngle + Lon - RA;
|
|
|
|
elev = asin(sin(Lat)*sin(Decl) + cos(Lat)*(cos(Decl)*cos(HrAngle)));
|
|
// Azimuth measured eastward from north.
|
|
// azimuth = PI+atan2(sin(HrAngle),cos(HrAngle)*sin(Lat)-tan(Decl)*cos(Lat));
|
|
|
|
return elev > 0.; // if elevation is gt 0 then it is a day
|
|
}
|